Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Add filters

Document Type
Year range
Br J Anaesth ; 126(2): 544-549, 2021 02.
Article in English | MEDLINE | ID: covidwho-934893


BACKGROUND: Hazardous pathogens are spread in either droplets or aerosols produced during aerosol-generating procedures (AGP). Adjuncts minimising exposure of healthcare workers to hazardous pathogens released during AGP may be beneficial. We used state-of-the-art computational fluid dynamics (CFD) modelling to optimise the performance of a custom-designed shield. METHODS: We modelled airflow patterns and trajectories of particles (size range 1-500 µm) emitted during a typical cough using CFD (ANSYS Fluent software, Canonsburg, PA, USA), in the presence and absence of a protective shield enclosing the head of a patient. We modelled the effect of different shield designs, suction tube position, and suction flow rate on particle escape from the shield. RESULTS: Use of the shield prevented escape of 99.1-100% of particles, which were either trapped on the shield walls (16-21%) or extracted via suction (79-82%). At most, 0.9% particles remained floating inside the shield. Suction flow rates (40-160 L min-1) had no effect on the final location of particles in a closed system. Particle removal from within the shield was optimal when a suction catheter was placed vertically next to the head of the patient. Addition of multiple openings in the shield reduced the purging performance from 99% at 160 L min-1 to 67% at 40 L min-1. CONCLUSION: CFD modelling provides information to guide optimisation of the efficient removal of hazardous pathogens released during AGP from a custom-designed shield. These data are essential to establish before clinical use, pragmatic clinical trials, or both.

COVID-19/transmission , Hydrodynamics , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Models, Theoretical , Occupational Exposure/prevention & control , Personal Protective Equipment , Aerosols , Cough/virology , Equipment Design , Health Personnel , Humans