Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Circulation ; 145(18): 1398-1411, 2022 May 03.
Article in English | MEDLINE | ID: covidwho-1779500

ABSTRACT

BACKGROUND: SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood. METHODS: We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data. RESULTS: We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells. CONCLUSIONS: Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Cross-Sectional Studies , Genome-Wide Association Study , Humans , Receptors, Coronavirus , SARS-CoV-2
2.
Immunity ; 55(3): 542-556.e5, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1768197

ABSTRACT

Some patients hospitalized with acute COVID-19 suffer respiratory symptoms that persist for many months. We delineated the immune-proteomic landscape in the airways and peripheral blood of healthy controls and post-COVID-19 patients 3 to 6 months after hospital discharge. Post-COVID-19 patients showed abnormal airway (but not plasma) proteomes, with an elevated concentration of proteins associated with apoptosis, tissue repair, and epithelial injury versus healthy individuals. Increased numbers of cytotoxic lymphocytes were observed in individuals with greater airway dysfunction, while increased B cell numbers and altered monocyte subsets were associated with more widespread lung abnormalities. A one-year follow-up of some post-COVID-19 patients indicated that these abnormalities resolved over time. In summary, COVID-19 causes a prolonged change to the airway immune landscape in those with persistent lung disease, with evidence of cell death and tissue repair linked to the ongoing activation of cytotoxic T cells.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Monocytes/immunology , Respiration Disorders/immunology , Respiratory System/immunology , SARS-CoV-2/physiology , T-Lymphocytes, Cytotoxic/immunology , Adult , Aged , COVID-19/complications , Female , Follow-Up Studies , Humans , Immunity, Cellular , Immunoproteins , Male , Middle Aged , Proteome , Respiration Disorders/etiology , Respiratory System/pathology
3.
Oxf Open Immunol ; 2(1): iqab014, 2021.
Article in English | MEDLINE | ID: covidwho-1377979

ABSTRACT

Protease inhibitors influence a range of innate immunity and inflammatory pathways. We quantified plasma concentrations of key anti-inflammatory protease inhibitors in chronic haemodialysis patients with coronavirus disease 2019 (COVID-19). The samples were collected early in the disease course to determine whether plasma protease inhibitor levels associated with the presence and severity of COVID-19. We used antibody-based immunoassays to measure plasma concentrations of C1 esterase inhibitor, alpha2-macroglobulin, antithrombin and inter-alpha-inhibitor heavy chain 4 (ITIH4) in 100 serial samples from 27 haemodialysis patients with COVID-19. ITIH4 was tested in two assays, one measuring intact ITIH4 and another also detecting any fragmented ITIH4 (total ITIH4). Control cohorts were 32 haemodialysis patients without COVID-19 and 32 healthy controls. We compared protease inhibitor concentration based on current and future COVID-19 severity and with C-reactive protein. Results were adjusted for repeated measures and multiple comparisons. Analysis of all available samples demonstrated lower plasma C1 esterase inhibitor and α2M and higher total ITIH4 in COVID-19 compared with dialysis controls. These differences were also seen in the first sample collected after COVID-19 diagnosis, a median of 4 days from diagnostic swab. Plasma ITIH4 levels were higher in severe than the non-severe COVID-19. Serum C-reactive protein correlated positively with plasma levels of antithrombin, intact ITIH4 and total ITIH4. In conclusion, plasma protease inhibitor concentrations are altered in COVID-19.

4.
Front Immunol ; 12: 671052, 2021.
Article in English | MEDLINE | ID: covidwho-1231338

ABSTRACT

We do not understand why non-white ethnicity and chronic kidney disease increase susceptibility to COVID-19. The lectin pathway of complement activation is a key contributor to innate immunity and inflammation. Concentrations of plasma lectin pathway proteins influence pathway activity and vary with ethnicity. We measured circulating lectin proteins in a multi-ethnic cohort of chronic kidney disease patients with and without COVID19 infection to determine if lectin pathway activation was contributing to COVID19 severity. We measured 11 lectin proteins in serial samples from a cohort of 33 patients with chronic kidney impairment and COVID19. Controls were single plasma samples from 32 patients on dialysis and 32 healthy individuals. We demonstrated multiple associations between recognition molecules and associated proteases of the lectin pathway and COVID-19, including COVID-19 severity. Some of these associations were unique to patients of Asian and White ethnicity. Our novel findings demonstrate that COVID19 infection alters the concentration of plasma lectin proteins and some of these changes were linked to ethnicity. This suggests a role for the lectin pathway in the host response to COVID-19 and suggest that variability within this pathway may contribute to ethnicity-associated differences in susceptibility to severe COVID-19.


Subject(s)
COVID-19/blood , Complement Pathway, Mannose-Binding Lectin , Lectins/blood , Renal Insufficiency, Chronic/blood , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , COVID-19/ethnology , COVID-19/immunology , COVID-19/pathology , Female , Humans , Lectins/immunology , Male , Middle Aged , Renal Insufficiency, Chronic/ethnology , Renal Insufficiency, Chronic/immunology , Renal Insufficiency, Chronic/pathology , SARS-CoV-2/immunology
5.
Nat Med ; 27(4): 668-676, 2021 04.
Article in English | MEDLINE | ID: covidwho-1174686

ABSTRACT

Drug repurposing provides a rapid approach to meet the urgent need for therapeutics to address COVID-19. To identify therapeutic targets relevant to COVID-19, we conducted Mendelian randomization analyses, deriving genetic instruments based on transcriptomic and proteomic data for 1,263 actionable proteins that are targeted by approved drugs or in clinical phase of drug development. Using summary statistics from the Host Genetics Initiative and the Million Veteran Program, we studied 7,554 patients hospitalized with COVID-19 and >1 million controls. We found significant Mendelian randomization results for three proteins (ACE2, P = 1.6 × 10-6; IFNAR2, P = 9.8 × 10-11 and IL-10RB, P = 2.3 × 10-14) using cis-expression quantitative trait loci genetic instruments that also had strong evidence for colocalization with COVID-19 hospitalization. To disentangle the shared expression quantitative trait loci signal for IL10RB and IFNAR2, we conducted phenome-wide association scans and pathway enrichment analysis, which suggested that IFNAR2 is more likely to play a role in COVID-19 hospitalization. Our findings prioritize trials of drugs targeting IFNAR2 and ACE2 for early management of COVID-19.


Subject(s)
COVID-19/genetics , Drug Repositioning , Mendelian Randomization Analysis/methods , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/physiology , COVID-19/drug therapy , Genome-Wide Association Study , Humans , Interleukin-10 Receptor beta Subunit/genetics , Interleukin-10 Receptor beta Subunit/physiology , Quantitative Trait Loci , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/physiology
6.
Elife ; 102021 03 11.
Article in English | MEDLINE | ID: covidwho-1128149

ABSTRACT

End-stage kidney disease (ESKD) patients are at high risk of severe COVID-19. We measured 436 circulating proteins in serial blood samples from hospitalised and non-hospitalised ESKD patients with COVID-19 (n = 256 samples from 55 patients). Comparison to 51 non-infected patients revealed 221 differentially expressed proteins, with consistent results in a separate subcohort of 46 COVID-19 patients. Two hundred and three proteins were associated with clinical severity, including IL6, markers of monocyte recruitment (e.g. CCL2, CCL7), neutrophil activation (e.g. proteinase-3), and epithelial injury (e.g. KRT19). Machine-learning identified predictors of severity including IL18BP, CTSD, GDF15, and KRT19. Survival analysis with joint models revealed 69 predictors of death. Longitudinal modelling with linear mixed models uncovered 32 proteins displaying different temporal profiles in severe versus non-severe disease, including integrins and adhesion molecules. These data implicate epithelial damage, innate immune activation, and leucocyte-endothelial interactions in the pathology of severe COVID-19 and provide a resource for identifying drug targets.


COVID-19 varies from a mild illness in some people to fatal disease in others. Patients with severe disease tend to be older and have underlying medical problems. People with kidney failure have a particularly high risk of developing severe or fatal COVID-19. Patients with severe COVID-19 have high levels of inflammation, causing damage to tissues around the body. Many drugs that target inflammation have already been developed for other diseases. Therefore, to repurpose existing drugs or design new treatments, it is important to determine which proteins drive inflammation in COVID-19. Here, Gisby, Clarke, Medjeral-Thomas et al. measured 436 proteins in the blood of patients with kidney failure and compared the levels between patients who had COVID-19 to those who did not. This revealed that patients with COVID-19 had increased levels of hundreds of proteins involved in inflammation and tissue injury. Using a combination of statistical and machine learning analyses, Gisby et al. probed the data for proteins that might predict a more severe disease progression. In total, over 200 proteins were linked to disease severity, and 69 with increased risk of death. Tracking how levels of blood proteins changed over time revealed further differences between mild and severe disease. Comparing this data with a similar study of COVID-19 in people without kidney failure showed many similarities. This suggests that the findings may apply to COVID-19 patients more generally. Identifying the proteins that are a cause of severe COVID-19 ­ rather than just correlated with it ­ is an important next step that could help to select new drugs for severe COVID-19.


Subject(s)
COVID-19/blood , Kidney Failure, Chronic/blood , Kidney Failure, Chronic/virology , Renal Dialysis/methods , Aged , Biomarkers/blood , COVID-19/mortality , COVID-19/virology , Female , Forecasting , Hospitalization , Humans , Kidney Failure, Chronic/mortality , Kidney Failure, Chronic/therapy , Longitudinal Studies , Male , Middle Aged , Prognosis , Proteomics/methods , Renal Dialysis/mortality , SARS-CoV-2/isolation & purification , Severity of Illness Index
7.
Clin Kidney J ; 13(5): 889-896, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1109191

ABSTRACT

BACKGROUND: Complement activation may play a pathogenic role in patients with severe coronavirus disease 2019 (COVID-19) by contributing to tissue inflammation and microvascular thrombosis. METHODS: Serial samples were collected from patients receiving maintenance haemodialysis (HD). Thirty-nine patients had confirmed COVID-19 and 10 patients had no evidence of COVID-19. Plasma C5a and C3a levels were measured using enzyme-linked immunosorbent assay. RESULTS: We identified elevated levels of plasma C3a and C5a in HD patients with severe COVID-19 compared with controls. Serial sampling identified that C5a levels were elevated prior to clinical deterioration in patients who developed severe disease. C3a more closely mirrored both clinical and biochemical disease severity. CONCLUSIONS: Our findings suggest that activation of complement plays a role in the pathogenesis of COVID-19, leading to endothelial injury and lung damage. C5a may be an earlier biomarker of disease severity than conventional parameters such as C-reactive protein and this warrants further investigation in dedicated biomarker studies. Our data support the testing of complement inhibition as a therapeutic strategy for patients with severe COVID-19.

8.
R Soc Open Sci ; 7(11): 200958, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1005759

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) and serine protease TMPRSS2 have been implicated in cell entry for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19). The expression of ACE2 and TMPRSS2 in the lung epithelium might have implications for the risk of SARS-CoV-2 infection and severity of COVID-19. We use human genetic variants that proxy angiotensin-converting enzyme (ACE) inhibitor drug effects and cardiovascular risk factors to investigate whether these exposures affect lung ACE2 and TMPRSS2 gene expression and circulating ACE2 levels. We observed no consistent evidence of an association of genetically predicted serum ACE levels with any of our outcomes. There was weak evidence for an association of genetically predicted serum ACE levels with ACE2 gene expression in the Lung eQTL Consortium (p = 0.014), but this finding did not replicate. There was evidence of a positive association of genetic liability to type 2 diabetes mellitus with lung ACE2 gene expression in the Gene-Tissue Expression (GTEx) study (p = 4 × 10-4) and with circulating plasma ACE2 levels in the INTERVAL study (p = 0.03), but not with lung ACE2 expression in the Lung eQTL Consortium study (p = 0.68). There were no associations of genetically proxied liability to the other cardiometabolic traits with any outcome. This study does not provide consistent evidence to support an effect of serum ACE levels (as a proxy for ACE inhibitors) or cardiometabolic risk factors on lung ACE2 and TMPRSS2 expression or plasma ACE2 levels.

SELECTION OF CITATIONS
SEARCH DETAIL