Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Add filters

Year range
PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-334715


The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40-80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Delta's infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37-163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58-120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average ~6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Delta's enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations.

Clinical Cancer Research ; 27(6 SUPPL 1), 2021.
Article in English | EMBASE | ID: covidwho-1816919


Cancer patients display immunomodulation related to malignancy and anti-cancer therapies, but how these factors impact COVID-19 remains unknown. To investigate immune responses in cancer patients with COVID-19, we undertook a prospective case-control study, enrolling hospitalized solid tumor patients with acute COVID-19, as well as age-, gender-, and comorbidity-matched COVID-19 patients without cancer as controls. Using biospecimens collected during hospitalization, we performed virologic measurements as well as in-depth immunophenotyping of cellular, antibody and cytokine responses. We enrolled 17 cancer patients (cases) admitted to Yale-New Haven Hospital between March 15 and June 30, 2020 with COVID-19, as well as 17 matched non-cancer patients (controls) admitted with COVID-19. No significant differences were observed between cases and controls based on patient characteristics (age, gender, race, co-morbidities, smoking history, days from symptom onset to COVID-19 diagnosis) or outcomes (COVID-19 severity, length of hospital stay, rate of intubation or mortality). The most common primary tumor sites were lung (4/17) and gastrointestinal (4/17);all cases had received cancer-directed therapy within 6 months of COVID-19 diagnosis, with 13/17 receiving treatment less than 1 month prior to hospitalization. Three of 17 cases had received immune checkpoint inhibitor therapies. Despite having similar SARS-CoV-2 viral RNA loads at the time of COVID-19 diagnosis when compared with controls, cancer cases had increased viral RNA abundance during hospitalization, suggesting slower clearance. Antibody responses against SARS-CoV-2 were preserved in cancer cases, with cases displaying similar levels of IgM and IgG antibodies directed against SARS-CoV-2 epitopes compared to controls. Cytokine profiling revealed higher plasma levels of CCL3, IL1A and CXCL12 in cancer cases compared to controls. Using flow cytometric immunophenotyping, we found that innate immune and non-T cell adaptive immune parameters were similar between cases and controls hospitalized with COVID-19. However, among cancer cases on conventional therapies, T cell lymphopenia was more profound, and these cases demonstrated higher levels of CD8+ exhausted (CD8+CD45RA-PD1+TIM3+ ), CD8+GranzymeB+ and CD4+CD38+HLA-DR+ and CD8+CD38+HLA-DR+ activated T cells when compared with controls;interestingly, these differences were not observed in patients who had received immune checkpoint inhibition. Thus, we found reduced viral RNA clearance and specific alterations in T cell and cytokine responses in cancer patients hospitalized with COVID-19 compared with matched controls with COVID-19. This dysregulated T cell response in cancer patients, which may reflect immune modulation due to chronic antigen stimulation as well as cancer therapies, may lead to altered virologic and clinical outcomes in this population.

PubMed; 2021.
Preprint in English | PubMed | ID: ppcovidwho-330706


With the emergence of SARS-CoV-2 variants that may increase transmissibility and/or cause escape from immune responses 1-3 , there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant first detected in the UK 4,5 could be serendipitously detected by the ThermoFisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike DELTA69-70, would cause a "spike gene target failure" (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern that lack spike DELTA69-70, such as B.1.351 (also 501Y.V2) detected in South Africa 6 and P.1 (also 501Y.V3) recently detected in Brazil 7 . We identified a deletion in the ORF1a gene (ORF1a DELTA3675-3677) in all three variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a DELTA3675-3677 as the primary target and spike DELTA69-70 to differentiate, we designed and validated an open source PCR assay to detect SARS-CoV-2 variants of concern 8 . Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence spread of B.1.1.7, B.1.351, and P.1.

Preprint in English | MEDLINE | ID: ppcovidwho-326635


Prior to the emergence of antigenically distinct SARS-CoV-2 variants, reinfections were reported infrequently - presumably due to the generation of durable and protective immune responses. However, case reports also suggested that rare, repeated infections may occur as soon as 48 days following initial disease onset. The underlying immunologic deficiencies enabling SARS-CoV-2 reinfections are currently unknown. Here we describe a renal transplant recipient who developed recurrent, symptomatic SARS-CoV-2 infection - confirmed by whole virus genome sequencing - 7 months after primary infection. To elucidate the immunological mechanisms responsible for SARS-CoV-2 reinfection, we performed longitudinal profiling of cellular and humoral responses during both primary and recurrent SARS-CoV-2 infection. We found that the patient responded to the primary infection with transient, poor-quality adaptive immune responses. The patient's immune system was further compromised by intervening treatment for acute rejection of the renal allograft prior to reinfection. Importantly, we also identified the development of neutralizing antibodies and the formation of humoral memory responses prior to SARS-CoV-2 reinfection. However, these neutralizing antibodies failed to confer protection against reinfection, suggesting that additional factors are required for efficient prevention of SARS-CoV-2 reinfection. Further, we found no evidence supporting viral evasion of primary adaptive immune responses, suggesting that susceptibility to reinfection may be determined by host factors rather than pathogen adaptation in this patient. In summary, our study suggests that a low neutralizing antibody presence alone is not sufficient to confer resistance against reinfection. Thus, patients with solid organ transplantation, or patients who are otherwise immunosuppressed, who recover from infection with SARS-CoV-2 may not develop sufficient protective immunity and are at risk of reinfection.

Preprint in English | MEDLINE | ID: ppcovidwho-326567


Since its emergence and detection in Wuhan, China in late 2019, the novel coronavirus SARS-CoV-2 has spread to nearly every country around the world, resulting in hundreds of thousands of infections to date. The virus was first detected in the Pacific Northwest region of the United States in January, 2020, with subsequent COVID-19 outbreaks detected in all 50 states by early March. To uncover the sources of SARS-CoV-2 introductions and patterns of spread within the U.S., we sequenced nine viral genomes from early reported COVID-19 patients in Connecticut. Our phylogenetic analysis places the majority of these genomes with viruses sequenced from Washington state. By coupling our genomic data with domestic and international travel patterns, we show that early SARS-CoV-2 transmission in Connecticut was likely driven by domestic introductions. Moreover, the risk of domestic importation to Connecticut exceeded that of international importation by mid-March regardless of our estimated impacts of federal travel restrictions. This study provides evidence for widespread, sustained transmission of SARS-CoV-2 within the U.S. and highlights the critical need for local surveillance.