Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Database
Language
Document Type
Year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21266899

ABSTRACT

Recent months have demonstrated that emerging variants may set back the global COVID-19 response. The ability to rapidly assess the threat of new variants in real-time is critical for timely optimisation of control strategies. We extend the EpiEstim R package, designed to estimate the time-varying reproduction number (Rt), to estimate in real-time the effective transmission advantage of a new variant compared to a reference variant. Our method can combine information across multiple locations and over time and was validated using an extensive simulation study, designed to mimic a variety of real-time epidemic contexts. We estimate that the SARS-CoV-2 Alpha variant is 1.46 (95% Credible Interval 1.44-1.47) and 1.29, (95% CrI 1.29-1.30) times more transmissible than the wild type, using data from England and France respectively. We further estimate that Beta and Gamma combined are 1.25 (95% CrI 1.24-1.27) times more transmissible than the wildtype (France data). All results are in line with previous estimates from literature, but could have been obtained earlier and more easily with our off-the-shelf open-source tool. Our tool can be used as an important first step towards quantifying the threat of new variants in real-time. Given the popularity of EpiEstim, this extension will likely be used widely to monitor the co-circulation and/or emergence of multiple variants of infectious pathogens. Significance StatementEarly assessment of the transmissibility of new variants of an infectious pathogen is critical for anticipating their impact and designing appropriate interventions. However, this often requires complex and bespoke analyses relying on multiple data streams, including genomic data. Here we present a novel method and software to rapidly quantify the transmission advantage of new variants. Our method is fast and requires only routinely collected disease surveillance data, making it easy to use in real-time. The ongoing high level of SARS-CoV-2 circulation in a number of countries makes the emergence of new variants highly likely. Our work offers a powerful tool to help public health bodies monitor such emerging variants and rapidly detect those with increased transmissibility.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21265810

ABSTRACT

We report on the second and final part of a pre-registered forecasting study on COVID-19 cases and deaths in Germany and Poland. Fifteen independent research teams provided forecasts at lead times of one through four weeks from January through mid-April 2021. Compared to the first part (October-December 2020), the number of participating teams increased, and a number of teams started providing subnational-level forecasts. The addressed time period is characterized by rather stable non-pharmaceutical interventions in both countries, making short-term predictions more straightforward than in the first part of our study. In both countries, case counts declined initially, before rebounding due to the rise of the B.1.1.7 variant. Deaths declined through most of the study period in Germany while in Poland they increased after a prolonged plateau. Many, though not all, models outperformed a simple baseline model up to four weeks ahead, with ensemble methods showing very good relative performance. Major trend changes in reported cases, however, remained challenging to predict.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21260746

ABSTRACT

BackgroundAs of July 2021, more than 180,000,000 cases of COVID-19 have been reported across the world, with more than 4 million deaths. Mathematical modelling and forecasting efforts have been widely used to inform policy-making and to create situational awareness. Methods and FindingsFrom 8th March to 29th November 2020, we produced weekly estimates of SARS-CoV-2 transmissibility and forecasts of deaths due to COVID-19 for countries with evidence of sustained transmission. The estimates and forecasts were based on an ensemble model comprising of three models that were calibrated using only the reported number of COVID-19 cases and deaths in each country. We also developed a novel heuristic to combine weekly estimates of transmissibility and potential changes in population immunity due to infection to produce forecasts over a 4-week horizon. We evaluated the robustness of the forecasts using relative error, coverage probability, and comparisons with null models. ConclusionsDuring the 39-week period covered by this study, we produced short- and medium-term forecasts for 81 countries. Both the short- and medium-term forecasts captured well the epidemic trajectory across different waves of COVID-19 infections with small relative errors over the forecast horizon. The model was well calibrated with 56.3% and 45.6% of the observations lying in the 50% Credible Interval in 1-week and 4-week ahead forecasts respectively. We could accurately characterise the overall phase of the epidemic up to 4-weeks ahead in 84.9% of country-days. The medium-term forecasts can be used in conjunction with the short-term forecasts of COVID-19 mortality as a useful planning tool as countries continue to relax stringent public health measures that were implemented to contain the pandemic.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20198663

ABSTRACT

BackgroundAs in many countries, quantifying COVID-19 spread in Indonesia remains challenging due to testing limitations. In Java, non-pharmaceutical interventions (NPIs) were implemented throughout 2020. However, as a vaccination campaign launches, cases and deaths are rising across the island. MethodsWe used modelling to explore the extent to which data on burials in Jakarta using strict COVID-19 protocols (C19P) provide additional insight into the transmissibility of the disease, epidemic trajectory, and the impact of NPIs. We assess how implementation of NPIs in early 2021 will shape the epidemic during the period of likely vaccine roll-out. ResultsC19P burial data in Jakarta suggest a death toll approximately 3.3 times higher than reported. Transmission estimates using these data suggest earlier, larger, and more sustained impact of NPIs. Measures to reduce sub-national spread, particularly during Ramadan, substantially mitigated spread to more vulnerable rural areas. Given current trajectory, daily cases and deaths are likely to increase in most regions as the vaccine is rolled-out. Transmission may peak in early 2021 in Jakarta if current levels of control are maintained. However, relaxation of control measures is likely to lead to a subsequent resurgence in the absence of an effective vaccination campaign. ConclusionSyndromic measures of mortality provide a more complete picture of COVID-19 severity upon which to base decision-making. The high potential impact of the vaccine in Java is attributable to reductions in transmission to date and dependent on these being maintained. Increases in control in the relatively short-term will likely yield large, synergistic increases in vaccine impact. Key questionsO_ST_ABSWhat is already known?C_ST_ABSO_LIIn many settings, limited SARS-CoV-2 testing makes it difficult to estimate the true trajectory and associated burden of the virus. C_LIO_LINon-pharmaceutical interventions (NPIs) are key tools to mitigate SARS-CoV-2 transmission. C_LIO_LIVaccines show promise but effectiveness depends upon prioritization strategies, roll-out and uptake. C_LI What are the new findings?O_LIThis study gives evidence of the value of syndrome-based mortality as a metric, which is less dependent upon testing capacity with which to estimate transmission trends and evaluate intervention impact. C_LIO_LINPIs implemented in Java earlier in the pandemic have substantially slowed the course of the epidemic with movement restrictions during Ramadan preventing spread to more vulnerable rural populations. C_LIO_LIPopulation-level immunity remains below proposed herd-immunity thresholds for the virus, though it is likely substantially higher in Jakarta. C_LI What do the new findings imply?O_LIGiven current levels of control, upwards trends in deaths are likely to continue in many provinces while the vaccine is scheduled to be rolled out. A key exception is Jakarta where population-level immunity may increase to a level where the epidemic begins to decline before the vaccine campaign has reached high coverage. C_LIO_LIFurther relaxation of measures would lead to more rapidly progressing epidemics, depleting the eventual incremental effectiveness of the vaccine. Maintaining adherence to control measures in Jakarta may be particularly challenging if the epidemic enters a decline phase but will remain necessary to prevent a subsequent large wave. Elsewhere, higher levels of control with NPIs are likely to yield high synergistic vaccine impact. C_LI

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20152355

ABSTRACT

As of 1st June 2020, the US Centers for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly modelled the US epidemic at the state-level, using publicly available death data within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We used changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on the rate of transmission of SARS-CoV-2. Nationally, we estimated 3.7% [3.4%-4.0%] of the population had been infected by 1st June 2020, with wide variation between states, and approximately 0.01% of the population was infectious. We also demonstrated that good model forecasts of deaths for the next 3 weeks with low error and good coverage of our credible intervals.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-20096701

ABSTRACT

1Brazil is currently reporting the second highest number of COVID-19 deaths in the world. Here we characterise the initial dynamics of COVID-19 across the country and assess the impact of non-pharmaceutical interventions (NPIs) that were implemented using a semi-mechanistic Bayesian hierarchical modelling approach. Our results highlight the significant impact these NPIs had across states, reducing an average Rt > 3 to an average of 1.5 by 9-May-2020, but that these interventions failed to reduce Rt < 1, congruent with the worsening epidemic Brazil has experienced since. We identify extensive heterogeneity in the epidemic trajectory across Brazil, with the estimated number of days to reach 0.1% of the state population infected since the first nationally recorded case ranging from 20 days in Sao Paulo compared to 60 days in Goias, underscoring the importance of sub-national analyses in understanding asynchronous state-level epidemics underlying the national spread and burden of COVID-19.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-20089359

ABSTRACT

Italy was the first European country to experience sustained local transmission of COVID-19. As of 1st May 2020, the Italian health authorities reported 28,238 deaths nationally. To control the epidemic, the Italian government implemented a suite of non-pharmaceutical interventions (NPIs), including school and university closures, social distancing and full lockdown involving banning of public gatherings and non essential movement. In this report, we model the effect of NPIs on transmission using data on average mobility. We estimate that the average reproduction number (a measure of transmission intensity) is currently below one for all Italian regions, and significantly so for the majority of the regions. Despite the large number of deaths, the proportion of population that has been infected by SARS-CoV-2 (the attack rate) is far from the herd immunity threshold in all Italian regions, with the highest attack rate observed in Lombardy (13.18% [10.66%-16.70%]). Italy is set to relax the currently implemented NPIs from 4th May 2020. Given the control achieved by NPIs, we consider three scenarios for the next 8 weeks: a scenario in which mobility remains the same as during the lockdown, a scenario in which mobility returns to pre-lockdown levels by 20%, and a scenario in which mobility returns to pre-lockdown levels by 40%. The scenarios explored assume that mobility is scaled evenly across all dimensions, that behaviour stays the same as before NPIs were implemented, that no pharmaceutical interventions are introduced, and it does not include transmission reduction from contact tracing, testing and the isolation of confirmed or suspected cases. New interventions, such as enhanced testing and contact tracing are going to be introduced and will likely contribute to reductions in transmission; therefore our estimates should be viewed as pessimistic projections. We find that, in the absence of additional interventions, even a 20% return to pre-lockdown mobility could lead to a resurgence in the number of deaths far greater than experienced in the current wave in several regions. Future increases in the number of deaths will lag behind the increase in transmission intensity and so a second wave will not be immediately apparent from just monitoring of the daily number of deaths. Our results suggest that SARS-CoV-2 transmission as well as mobility should be closely monitored in the next weeks and months. To compensate for the increase in mobility that will occur due to the relaxation of the currently implemented NPIs, adherence to the recommended social distancing measures alongside enhanced community surveillance including swab testing, contact tracing and the early isolation of infections are of paramount importance to reduce the risk of resurgence in transmission. SUGGESTED CITATIONMichaela A. C. Vollmer, Swapnil Mishra, H Juliette T Unwin, Axel Gandy et al. Using mobility to estimate the transmission intensity of COVID-19 in Italy: a subnational analysis with future scenarios. Imperial College London (2020) doi:https://doi.org/10.25561/78677 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

SELECTION OF CITATIONS
SEARCH DETAIL