Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-320909

ABSTRACT

As the COVID-19 outbreak evolves around the world, the World Health Organization (WHO) and its Member States have been heavily relying on staying at home and lock down measures to control the spread of the virus. In the last months, various signs showed that the COVID-19 curve was flattening, but even the partial lifting of some containment measures (e.g., school closures and telecommuting) appear to favor a second wave of the disease. The accurate evaluation of possible countermeasures and their well-timed revocation are therefore crucial to avoid future waves or reduce their duration. In this paper, we analyze patient and route data of infected patients from January 20, 2020, to May 31, 2020, collected by the Korean Center for Disease Control & Prevention (KCDC). This data analysis helps us to characterize patient mobility patterns and then use this characterization to parameterize simulations to evaluate different what-if scenarios. Although this is not a definitive model of how COVID-19 spreads in a population, its usefulness and flexibility are illustrated using real-world data for exploring virus spread under a variety of circumstances.

2.
Am J Respir Crit Care Med ; 2020 Sep 02.
Article in English | MEDLINE | ID: covidwho-1452989

ABSTRACT

Rationale: Obesity is characterized by elevated pleural pressure (PPL) and worsening atelectasis during mechanical ventilation in patients with acute respiratory distress syndrome (ARDS). Objectives: To determine the effects of lung recruitment maneuver (LRM) in the presence of elevated PPL on hemodynamics, left and right ventricular pressures and pulmonary vascular resistance. We hypothesized that elevated PPL protects the cardiovascular system against high airway pressures and prevents lung overdistension. Methods: First, an interventional crossover trial in adult subjects with ARDS and BMI ≥35 kg/m2 (n=21) was performed to explore the hemodynamic consequences of LRM. Second, cardiovascular function was studied during low/high PEEPs in a model of swine with ARDS and high PPL (n=9) versus healthy swine with normal PPL (n=6). Measurements and Main Results: Subjects with ARDS and obesity (BMI=57±12 kg/m2), following LRM, required an increase in PEEP of 8[7, 10] cmH2O above traditional ARDSnet settings to improve lung function, oxygenation and ventilation/perfusion matching, without impairment of hemodynamics or right heart function. ARDS swine with high PPL demonstrated unchanged transmural left ventricle pressure and systemic blood pressure after LRM protocol. Pulmonary artery hypertension decreased 8[13, 4] mmHg, as did vascular resistance 1.5[2.2, 0.9] WU, and transmural right ventricle pressure 10[15, 6] mmHg during exhalation. LRM and PEEP decreased pulmonary vascular resistance and normalized ventilation/perfusion ratio. Conclusions: High airway pressure is required to recruit lung atelectasis in patients with ARDS and class III obesity but causes minimal overdistension. Additionally, patients with ARDS and class III obesity tolerate hemodynamically LRM with high airway pressure.

3.
Crit Care Res Pract ; 2021: 6682944, 2021.
Article in English | MEDLINE | ID: covidwho-1247438

ABSTRACT

BACKGROUND: Acute respiratory failure from COVID-19 pneumonia is a major cause of death after SARS-CoV-2 infection. We investigated whether PaO2/FiO2, oxygenation index (OI), SpO2/FiO2, and oxygen saturation index (OSI), commonly used to assess the severity of acute respiratory distress syndrome (ARDS), can predict mortality in mechanically ventilated COVID-19 patients. METHODS: In this single-centered retrospective pilot study, we enrolled 68 critically ill mechanically ventilated adult patients with confirmed COVID-19. Physiological variables were recorded on the day of intubation (day 0) and postintubation days 3 and 7. The association between physiological parameters, PaO2/FiO2, OI, SpO2/FiO2, and OSI with mortality was assessed using multiple variable logistic regression analysis. Receiver operating characteristic analysis was conducted to evaluate the performance of the predictive models. RESULTS: The ARDS severity indices were not statistically different on the day of intubation, suggesting similar baseline conditions in nonsurviving and surviving patients. However, these indices were significantly worse in the nonsurviving as compared to surviving patients on postintubation days 3 and 7. On intubation day 3, PaO2/FiO2 was 101.0 (61.4) in nonsurviving patients vs. 140.2 (109.6) in surviving patients, p=0.004, and on day 7 106.3 (94.2) vs. 178.0 (69.3), p < 0.001. OI was 135.0 (129.7) in nonsurviving vs. 84.8 (86.1) in surviving patients (p=0.003) on day 3 and 150.0 (118.4) vs. 61.5 (46.7) (p < 0.001) on day 7. OSI was 12.0 (11.7) vs. 8.0 (10.0) (p=0.006) on day 3 and 14.7 (13.2) vs. 6.5 (5.4) (p < 0.001) on day 7. Similarly, SpO2/FiO2 was 130 (90) vs. 210 (90) (p=0.003) on day 3 and 130 (90) vs. 230 (50) (p < 0.001) on day 7, while OSI was 12.0 (11.7) vs. 8.0 (10.0) (p=0.006) on day 3 and 14.7 (13.2) vs. 6.5 (5.4) (p < 0.001) on day 7 in the nonsurviving and surviving patients, respectively. All measures were independently associated with hospital mortality, with significantly greater odds ratios observed on day 7. The area under the receiver operating characteristic curve (AUC) for mortality prediction was greatest on intubation day 7 (AUC = 0.775, 0.808, and 0.828 for PaO2/FiO2, OI, SpO2/FiO2, and OSI, respectively). CONCLUSIONS: Decline in oxygenation indices after intubation is predictive of mortality in COVID-19 patients. This time window is critical to the outcome of these patients and a possible target for future interventions. Future large-scale studies to confirm the prognostic value of the indices in COVID-19 patients are warranted.

4.
J Vis Exp ; (171)2021 05 04.
Article in English | MEDLINE | ID: covidwho-1241300

ABSTRACT

Nitric Oxide (NO) is administered as gas for inhalation to induce selective pulmonary vasodilation. It is a safe therapy, with few potential risks even if administered at high concentration. Inhaled NO gas is routinely used to increase systemic oxygenation in different disease conditions. The administration of high concentrations of NO also exerts a virucidal effect in vitro. Owing to its favorable pharmacodynamic and safety profiles, the familiarity in its use by critical care providers, and the potential for a direct virucidal effect, NO is clinically used in patients with coronavirus disease-2019 (COVID-19). Nevertheless, no device is currently available to easily administer inhaled NO at concentrations higher than 80 parts per million (ppm) at various inspired oxygen fractions, without the need for dedicated, heavy, and costly equipment. The development of a reliable, safe, inexpensive, lightweight, and ventilator-free solution is crucial, particularly for the early treatment of non-intubated patients outside of the intensive care unit (ICU) and in a limited-resource scenario. To overcome such a barrier, a simple system for the non-invasive NO gas administration up to 250 ppm was developed using standard consumables and a scavenging chamber. The method has been proven safe and reliable in delivering a specified NO concentration while limiting nitrogen dioxide levels. This paper aims to provide clinicians and researchers with the necessary information on how to assemble or adapt such a system for research purposes or clinical use in COVID-19 or other diseases in which NO administration might be beneficial.


Subject(s)
COVID-19/drug therapy , Nitric Oxide/therapeutic use , Ventilators, Mechanical , Administration, Inhalation , Critical Care , Humans , Intensive Care Units , Nitric Oxide/administration & dosage , Respiratory Protective Devices , SARS-CoV-2
5.
BMC Anesthesiol ; 21(1): 155, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1238704

ABSTRACT

BACKGROUND: The surge of critically ill patients due to the coronavirus disease-2019 (COVID-19) overwhelmed critical care capacity in areas of northern Italy. Anesthesia machines have been used as alternatives to traditional ICU mechanical ventilators. However, the outcomes for patients with COVID-19 respiratory failure cared for with Anesthesia Machines is currently unknow. We hypothesized that COVID-19 patients receiving care with Anesthesia Machines would have worse outcomes compared to standard practice. METHODS: We designed a retrospective study of patients admitted with a confirmed COVID-19 diagnosis at a large tertiary urban hospital in northern Italy. Two care units were included: a 27-bed standard ICU and a 15-bed temporary unit emergently opened in an operating room setting. Intubated patients assigned to Anesthesia Machines (AM group) were compared to a control cohort treated with standard mechanical ventilators (ICU-VENT group). Outcomes were assessed at 60-day follow-up. A multivariable Cox regression analysis of risk factors between survivors and non-survivors was conducted to determine the adjusted risk of death for patients assigned to AM group. RESULTS: Complete daily data from 89 mechanically ventilated patients consecutively admitted to the two units were analyzed. Seventeen patients were included in the AM group, whereas 72 were in the ICU-VENT group. Disease severity and intensity of treatment were comparable between the two groups. The 60-day mortality was significantly higher in the AM group compared to the ICU-vent group (12/17 vs. 27/72, 70.6% vs. 37.5%, respectively, p = 0.016). Allocation to AM group was associated with a significantly increased risk of death after adjusting for covariates (HR 4.05, 95% CI: 1.75-9.33, p = 0.001). Several incidents and complications were reported with Anesthesia Machine care, raising safety concerns. CONCLUSIONS: Our results support the hypothesis that care associated with the use of Anesthesia Machines is inadequate to provide long-term critical care to patients with COVID-19. Added safety risks must be considered if no other option is available to treat severely ill patients during the ongoing pandemic. CLINICAL TRIAL NUMBER: Not applicable.


Subject(s)
Anesthesiology/instrumentation , COVID-19/epidemiology , COVID-19/therapy , Critical Illness/epidemiology , Critical Illness/therapy , Respiration, Artificial/instrumentation , Aged , Female , Humans , Italy/epidemiology , Male , Middle Aged , Respiration, Artificial/methods , Retrospective Studies
6.
EClinicalMedicine ; 34: 100829, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1188499

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) secondary to coronavirus disease-2019 (COVID-19) is characterized by substantial heterogeneity in clinical, biochemical, and physiological characteristics. However, the pathophysiology of severe COVID-19 infection is poorly understood. Previous studies established clinical and biological phenotypes among classical ARDS cohorts, with important therapeutic implications. The phenotypic profile of COVID-19 associated ARDS remains unknown. METHODS: We used latent class modeling via a multivariate mixture model to identify phenotypes from clinical and biochemical data collected from 263 patients admitted to Massachusetts General Hospital intensive care unit with COVID-19-associated ARDS between March 13 and August 2, 2020. FINDINGS: We identified two distinct phenotypes of COVID-19-associated ARDS, with substantial differences in biochemical profiles despite minimal differences in respiratory dynamics. The minority phenotype (class 2, n = 70, 26·6%) demonstrated increased markers of coagulopathy, with mild relative hyper-inflammation and dramatically increased markers of end-organ dysfunction (e.g., creatinine, troponin). The odds of 28-day mortality among the class 2 phenotype was more than double that of the class 1 phenotype (40·0% vs.· 23·3%, OR = 2·2, 95% CI [1·2, 3·9]). INTERPRETATION: We identified distinct phenotypic profiles in COVID-19 associated ARDS, with little variation according to respiratory physiology but with important variation according to systemic and extra-pulmonary markers. Phenotypic identity was highly associated with short-term mortality. The class 2 phenotype exhibited prominent signatures of coagulopathy, suggesting that vascular dysfunction may play an important role in the clinical progression of severe COVID-19-related disease.

7.
Chest ; 159(4): 1426-1436, 2021 04.
Article in English | MEDLINE | ID: covidwho-921554

ABSTRACT

BACKGROUND: Sigh is a cyclic brief recruitment maneuver: previous physiologic studies showed that its use could be an interesting addition to pressure support ventilation to improve lung elastance, decrease regional heterogeneity, and increase release of surfactant. RESEARCH QUESTION: Is the clinical application of sigh during pressure support ventilation (PSV) feasible? STUDY DESIGN AND METHODS: We conducted a multicenter noninferiority randomized clinical trial on adult intubated patients with acute hypoxemic respiratory failure or ARDS undergoing PSV. Patients were randomized to the no-sigh group and treated by PSV alone, or to the sigh group, treated by PSV plus sigh (increase in airway pressure to 30 cm H2O for 3 s once per minute) until day 28 or death or successful spontaneous breathing trial. The primary end point of the study was feasibility, assessed as noninferiority (5% tolerance) in the proportion of patients failing assisted ventilation. Secondary outcomes included safety, physiologic parameters in the first week from randomization, 28-day mortality, and ventilator-free days. RESULTS: Two-hundred and fifty-eight patients (31% women; median age, 65 [54-75] years) were enrolled. In the sigh group, 23% of patients failed to remain on assisted ventilation vs 30% in the no-sigh group (absolute difference, -7%; 95% CI, -18% to 4%; P = .015 for noninferiority). Adverse events occurred in 12% vs 13% in the sigh vs no-sigh group (P = .852). Oxygenation was improved whereas tidal volume, respiratory rate, and corrected minute ventilation were lower over the first 7 days from randomization in the sigh vs no-sigh group. There was no significant difference in terms of mortality (16% vs 21%; P = .337) and ventilator-free days (22 [7-26] vs 22 [3-25] days; P = .300) for the sigh vs no-sigh group. INTERPRETATION: Among hypoxemic intubated ICU patients, application of sigh was feasible and without increased risk. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT03201263; URL: www.clinicaltrials.gov.


Subject(s)
Positive-Pressure Respiration , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/therapy , Aged , Female , Humans , Intubation, Intratracheal , Male , Middle Aged , Pilot Projects , Respiratory Distress Syndrome/physiopathology , Respiratory Insufficiency/physiopathology , Respiratory Mechanics
10.
Obstet Gynecol ; 136(6): 1109-1113, 2020 12.
Article in English | MEDLINE | ID: covidwho-733344

ABSTRACT

BACKGROUND: Rescue therapies to treat or prevent progression of coronavirus disease 2019 (COVID-19) hypoxic respiratory failure in pregnant patients are lacking. METHOD: To treat pregnant patients meeting criteria for severe or critical COVID-19 with high-dose (160-200 ppm) nitric oxide by mask twice daily and report on their clinical response. EXPERIENCE: Six pregnant patients were admitted with severe or critical COVID-19 at Massachusetts General Hospital from April to June 2020 and received inhalational nitric oxide therapy. All patients tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A total of 39 treatments was administered. An improvement in cardiopulmonary function was observed after commencing nitric oxide gas, as evidenced by an increase in systemic oxygenation in each administration session among those with evidence of baseline hypoxemia and reduction of tachypnea in all patients in each session. Three patients delivered a total of four neonates during hospitalization. At 28-day follow-up, all three patients were home and their newborns were in good condition. Three of the six patients remain pregnant after hospital discharge. Five patients had two negative test results on nasopharyngeal swab for SARS-CoV-2 within 28 days from admission. CONCLUSION: Nitric oxide at 160-200 ppm is easy to use, appears to be well tolerated, and might be of benefit in pregnant patients with COVID-19 with hypoxic respiratory failure.


Subject(s)
Coronavirus Infections/drug therapy , Nitric Oxide/administration & dosage , Pneumonia, Viral/drug therapy , Pregnancy Complications, Infectious/drug therapy , Administration, Inhalation , Betacoronavirus , COVID-19 , Female , Humans , Massachusetts , Pandemics , Pregnancy , Pregnancy Complications, Infectious/virology , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL