Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add filters

Year range
1.
J Allergy Clin Immunol ; 2021 Dec 21.
Article in English | MEDLINE | ID: covidwho-1587446

ABSTRACT

BACKGROUND: Data on the safety and efficacy of COVID-19 vaccination in people with a range of primary immune deficiencies are lacking since these patients were excluded from COVID-19 vaccine trials. This information may help in clinical management of this vulnerable patient group. OBJECTIVE: To assess humoral and T-cell immune responses after two doses of SARS-CoV-2 mRNA vaccines in patients with PIDs and functional B-cell defects. METHODS: A double-center retrospective review of patients with PID who completed COVID-19 mRNA vaccination and who had humoral responses assessed through SARS-CoV-2 spike protein receptor binding domain (RBD) IgG antibody levels with reflex assessment of the antibody to block RBD binding to ACE2 (hereafter referred to as ACE2 receptor blocking activity, as a surrogate test for neutralization) and T-cell response evaluated by an interferon-gamma release assay (IGRA). Immunization reactogenicity was also reviewed. RESULTS: A total of 33 patients with humoral defect were evaluated. 69.6% received BNT162b2 vaccine (Pfizer-BioNTech) and 30.3% received mRNA-1273 (Moderna). The mRNA vaccines were generally well tolerated without severe reactions. The IGRA was positive in 77.4% of our patients (24 of 31). About half of our subjects (16 of 33) had detectable RBD-specific IgG responses but only two of these 16 subjects had an ACE2 receptor blocking activity level of >50%. CONCLUSION: Vaccination of this cohort of PID patients with COVID-19 mRNA vaccines was safe and cellular immunity was stimulated in a majority. However, antibody responses to the spike protein RBD were less consistent, and, when detected, was not effective at ACE2 blocking. CLINICAL IMPLICATION: mRNA vaccination may be less effective at preventing acquisition of SARS-CoV-2 in our cohort of PID patients with functional B-cell defects. The Induction of SARS-CoV-2 spike protein-specific T-cell immunity by vaccination might help reduce the severity of disease in these patients.

2.
Cell Host Microbe ; 29(12): 1738-1743.e4, 2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1574127

ABSTRACT

Different SARS-CoV-2 vaccines are approved in various countries, but few direct comparisons of the antibody responses they stimulate have been reported. We collected plasma specimens in July 2021 from 196 Mongolian participants fully vaccinated with one of four COVID-19 vaccines: Pfizer/BioNTech, AstraZeneca, Sputnik V, and Sinopharm. Functional antibody testing with a panel of nine SARS-CoV-2 viral variant receptor binding domain (RBD) proteins revealed marked differences in vaccine responses, with low antibody levels and RBD-ACE2 blocking activity stimulated by the Sinopharm and Sputnik V vaccines in comparison to the AstraZeneca or Pfizer/BioNTech vaccines. The Alpha variant caused 97% of infections in Mongolia in June and early July 2021. Individuals who recover from SARS-CoV-2 infection after vaccination achieve high antibody titers in most cases. These data suggest that public health interventions such as vaccine boosting, potentially with more potent vaccine types, may be needed to control COVID-19 in Mongolia and worldwide.

4.
Clin Infect Dis ; 73(9): e3130-e3132, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1532491

ABSTRACT

We investigated feasibility and accuracy of an interferon-γ release assay (IGRA) for detection of T-cell responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Whole blood IGRA accurately distinguished between convalescent and uninfected healthy blood donors with a predominantly CD4+ T-cell response. SARS-CoV-2 IGRA may serve as a useful diagnostic tool in managing the coronavirus disease 2019 pandemic.


Subject(s)
COVID-19 , Interferon-gamma Release Tests , Antibodies, Viral , Humans , SARS-CoV-2 , T-Lymphocytes
5.
Non-conventional in English | [Unspecified Source], Grey literature | ID: grc-750507

ABSTRACT

During virus infection B cells are critical for the production of antibodies and protective immunity. Here we show that the human B cell compartment in patients with diagnostically confirmed SARS-CoV-2 and clinical COVID-19 is rapidly altered with the early recruitment of B cells expressing a limited subset of IGHV genes, progressing to a highly polyclonal response of B cells with broader IGHV gene usage and extensive class switching to IgG and IgA subclasses with limited somatic hypermutation in the initial weeks of infection. We identify extensive convergence of antibody sequences across SARS-CoV-2 patients, highlighting stereotyped naive responses to this virus. Notably, sequence-based detection in COVID-19 patients of convergent B cell clonotypes previously reported in SARS-CoV infection predicts the presence of SARS-CoV/SARS-CoV-2 cross-reactive antibody titers specific for the receptor-binding domain. These findings offer molecular insights into shared features of human B cell responses to SARS-CoV-2 and other zoonotic spillover coronaviruses.

6.
Laryngoscope ; 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1507102

ABSTRACT

OBJECTIVES/HYPOTHESIS: To determine the effect of povidone-iodine (PVP-I) nasal sprays on nasopharyngeal (NP) viral load as assessed by cycle threshold (Ct) on quantitative polymerase chain reaction (qPCR) of SARS-CoV-2 in outpatients. STUDY DESIGN: Three arm, triple blinded, randomized, placebo-controlled clinical trial. METHODS: Participants were randomized within 5 days of testing positive for COVID-19 to receive nasal sprays containing placebo (0.9% saline), 0.5% PVP-I, or 2.0% PVP-I. NP swabs for qPCR analysis were taken at baseline, 1-hour post-PVP-I spray (two sprays/nostril), and 3 days post-PVP-I spray (20 sprays/nostril). Symptom and adverse event questionnaires were completed at baseline, day 3, and day 5. University of Pennsylvania Smell Identification Tests (UPSIT) were completed at baseline and day 30. RESULTS: Mean Ct values increased over time in all groups, indicating declining viral loads, with no statistically significant difference noted in the rate of change between placebo and PVP-I groups. The 2.0% PVP-I group showed statistically significant improvement in all symptom categories; however, it also reported a high rate of nasal burning. Olfaction via UPSIT showed improvement by at least one category in all groups. There were no hospitalizations or mortalities within 30 days of study enrollment. CONCLUSIONS: Saline and low concentration PVP-I nasal sprays are well tolerated. Similar reductions in SARS-CoV-2 NP viral load were seen over time in all groups. All treatment groups showed improvement in olfaction over 30 days. These data suggest that dilute versions of PVP-I nasal spray are safe for topical use in the nasal cavity, but that PVP-I does not demonstrate virucidal activity in COVID-19 positive outpatients. LEVEL OF EVIDENCE: II Laryngoscope, 2021.

7.
J Clin Microbiol ; 59(8): e0085921, 2021 Jul 19.
Article in English | MEDLINE | ID: covidwho-1494947

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with concerning phenotypic mutations is of public health interest. Genomic surveillance is an important tool for a pandemic response, but many laboratories do not have the resources to support population-level sequencing. We hypothesized that a nucleic acid amplification test (NAAT) to genotype mutations in the viral spike protein could facilitate high-throughput variant surveillance. We designed and analytically validated a one-step multiplex allele-specific reverse transcriptase PCR (RT-qPCR) to detect three nonsynonymous spike protein mutations (L452R, E484K, N501Y). Assay specificity was validated with next-generation whole-genome sequencing. We then screened a large cohort of SARS-CoV-2-positive specimens from our San Francisco Bay Area population. Between 1 December 2020 and 1 March 2021, we screened 4,049 unique infections by genotyping RT-qPCR, with an assay failure rate of 2.8%. We detected 1,567 L452R mutations (38.7%), 34 N501Y mutations (0.84%), 22 E484K mutations (0.54%), and 3 (0.07%) E484K plus N501Y mutations. The assay had perfect (100%) concordance with whole-genome sequencing of a validation subset of 229 specimens and detected B.1.1.7, B.1.351, B.1.427, B.1.429, B.1.526, and P.2 variants, among others. The assay revealed the rapid emergence of the L452R variant in our population, with a prevalence of 24.8% in December 2020 that increased to 62.5% in March 2021. We developed and clinically implemented a genotyping RT-qPCR to conduct high-throughput SARS-CoV-2 variant screening. This approach can be adapted for emerging mutations and immediately implemented in laboratories already performing NAAT worldwide using existing equipment, personnel, and extracted nucleic acid.


Subject(s)
COVID-19 , SARS-CoV-2 , Epidemiological Monitoring , Genotype , Humans , Reverse Transcriptase Polymerase Chain Reaction
8.
Emerg Infect Dis ; 27(10): 2720-2723, 2021.
Article in English | MEDLINE | ID: covidwho-1486743

ABSTRACT

We report persistent severe acute respiratory syndrome coronavirus 2 infection in a patient with HIV/AIDS; the virus developed spike N terminal domain and receptor binding domain neutralization resistance mutations. Our findings suggest that immunocompromised patients can harbor emerging variants of severe acute respiratory syndrome coronavirus 2.


Subject(s)
Acquired Immunodeficiency Syndrome , COVID-19 , Humans , Mutation , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
10.
Clin Chem ; 2021 Oct 04.
Article in English | MEDLINE | ID: covidwho-1450383

ABSTRACT

BACKGROUND: Detection of SARS-CoV-2 nucleocapsid antigen in blood has been described, but the diagnostic and prognostic role of antigenemia is not well understood. This study aimed to determine the frequency, duration, and concentration of nucleocapsid antigen in plasma and its association with COVID-19 severity. METHODS: We utilized an ultrasensitive electrochemiluminescence immunoassay targeting SARS-CoV-2 nucleocapsid antigen to evaluate 777 plasma samples from 104 individuals with COVID-19. We compared plasma antigen to respiratory nucleic acid amplification testing (NAAT) in 74 individuals with COVID-19 from samples collected ± 1 day of diagnostic respiratory NAAT, and in 52 SARS-CoV-2-negative individuals. We used Kruskal-Wallis tests, multivariable logistic regression, and mixed-effects modeling to evaluate whether plasma antigen concentration was associated with disease severity. RESULTS: Plasma antigen had 91.9% (95% CI 83.2-97.0%) clinical sensitivity and 94.2% (84.1-98.8%) clinical specificity. Antigen-negative plasma samples belonged to patients with later respiratory cycle thresholds (Ct) when compared with antigen-positive plasma samples. Median plasma antigen concentration (log10 fg/mL) was 5.4 (IQR 3.9-6.0) in outpatients, 6.0 (5.4-6.5) in inpatients, and 6.6 (6.1-7.2) in intensive care unit (ICU) patients. In models adjusted for age, sex, diabetes, and hypertension, plasma antigen concentration at diagnosis was associated with ICU admission (OR 2.8 [95% CI 1.2-6.2], P=.01), but not with non-ICU hospitalization. Rate of antigen decrease was not associated with disease severity. CONCLUSIONS: SARS-CoV-2 plasma nucleocapsid antigen exhibited comparable diagnostic performance to upper respiratory NAAT, especially among those with late respiratory Ct. In addition to currently available tools, antigenemia may facilitate patient triage to optimize intensive care utilization.

11.
Front Immunol ; 12: 739037, 2021.
Article in English | MEDLINE | ID: covidwho-1448729

ABSTRACT

Background: Transfusion of COVID-19 convalescent plasma (CCP) containing high titers of anti-SARS-CoV-2 antibodies serves as therapy for COVID-19 patients. Transfusions early during disease course was found to be beneficial. Lessons from the SARS-CoV-2 pandemic could inform early responses to future pandemics and may continue to be relevant in lower resource settings. We sought to identify factors correlating to high antibody titers in convalescent plasma donors and understand the magnitude and pharmacokinetic time course of both transfused antibody titers and the endogenous antibody titers in transfused recipients. Methods: Plasma samples were collected up to 174 days after convalescence from 93 CCP donors with mild disease, and from 16 COVID-19 patients before and after transfusion. Using ELISA, anti-SARS-CoV-2 Spike RBD, S1, and N-protein antibodies, as well as capacity of antibodies to block ACE2 from binding to RBD was measured in an in vitro assay. As an estimate for viral load, viral RNA and N-protein plasma levels were assessed in COVID-19 patients. Results: Anti-SARS-CoV-2 antibody levels and RBD-ACE2 blocking capacity were highest within the first 60 days after symptom resolution and markedly decreased after 120 days. Highest antibody titers were found in CCP donors that experienced fever. Effect of transfused CCP was detectable in COVID-19 patients who received high-titer CCP and had not seroconverted at the time of transfusion. Decrease in viral RNA was seen in two of these patients. Conclusion: Our results suggest that high titer CCP should be collected within 60 days after recovery from donors with past fever. The much lower titers conferred by transfused antibodies compared to endogenous production in the patient underscore the importance of providing CCP prior to endogenous seroconversion.


Subject(s)
COVID-19/therapy , Convalescence , SARS-CoV-2/immunology , Seroconversion , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/blood , Blood Donors , COVID-19/blood , COVID-19/immunology , Female , Humans , Immunization, Passive , Kinetics , Male , Middle Aged , Outpatients , RNA, Viral/blood
12.
EBioMedicine ; 71: 103546, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1363149

ABSTRACT

BACKGROUND: Respiratory virus infections are significant causes of morbidity and mortality, and may induce host metabolite alterations by infecting respiratory epithelial cells. We investigated the use of liquid chromatography quadrupole time-of-flight mass spectrometry (LC/Q-TOF) combined with machine learning for the diagnosis of influenza infection. METHODS: We analyzed nasopharyngeal swab samples by LC/Q-TOF to identify distinct metabolic signatures for diagnosis of acute illness. Machine learning models were performed for classification, followed by Shapley additive explanation (SHAP) analysis to analyze feature importance and for biomarker discovery. FINDINGS: A total of 236 samples were tested in the discovery phase by LC/Q-TOF, including 118 positive samples (40 influenza A 2009 H1N1, 39 influenza H3 and 39 influenza B) as well as 118 age and sex-matched negative controls with acute respiratory illness. Analysis showed an area under the receiver operating characteristic curve (AUC) of 1.00 (95% confidence interval [95% CI] 0.99, 1.00), sensitivity of 1.00 (95% CI 0.86, 1.00) and specificity of 0.96 (95% CI 0.81, 0.99). The metabolite most strongly associated with differential classification was pyroglutamic acid. Independent validation of a biomarker signature based on the top 20 differentiating ion features was performed in a prospective cohort of 96 symptomatic individuals including 48 positive samples (24 influenza A 2009 H1N1, 5 influenza H3 and 19 influenza B) and 48 negative samples. Testing performed using a clinically-applicable targeted approach, liquid chromatography triple quadrupole mass spectrometry, showed an AUC of 1.00 (95% CI 0.998, 1.00), sensitivity of 0.94 (95% CI 0.83, 0.98), and specificity of 1.00 (95% CI 0.93, 1.00). Limitations include lack of sample suitability assessment, and need to validate these findings in additional patient populations. INTERPRETATION: This metabolomic approach has potential for diagnostic applications in infectious diseases testing, including other respiratory viruses, and may eventually be adapted for point-of-care testing. FUNDING: None.

13.
Nat Commun ; 12(1): 5753, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1447302

ABSTRACT

Patients with COVID-19 shed SARS-CoV-2 RNA in stool, sometimes well after their respiratory infection has cleared. This may be significant for patient health, epidemiology, and diagnosis. However, methods to preserve stool, and to extract and quantify viral RNA are not standardized. We test the performance of three preservative approaches at yielding detectable SARS-CoV-2 RNA: the OMNIgene-GUT kit, Zymo DNA/RNA shield kit, and the most commonly applied, storage without preservative. We test these in combination with three extraction kits: QIAamp Viral RNA Mini Kit, Zymo Quick-RNA Viral Kit, and MagMAX Viral/Pathogen Kit. We also test the utility of ddPCR and RT-qPCR for the reliable quantification of SARS-CoV-2 RNA from stool. We identify that the Zymo DNA/RNA preservative and the QiaAMP extraction kit yield more detectable RNA than the others, using both ddPCR and RT-qPCR. Taken together, we recommend a comprehensive methodology for preservation, extraction and detection of RNA from SARS-CoV-2 and other coronaviruses in stool.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , Feces/virology , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/genetics , Humans , Phosphoproteins/genetics , Preservation, Biological/standards , RNA, Viral/analysis , RNA, Viral/genetics , Reagent Kits, Diagnostic , Reference Standards , SARS-CoV-2/genetics , Specimen Handling/standards , Viral Load/standards
14.
Am J Infect Control ; 49(12): 1457-1463, 2021 12.
Article in English | MEDLINE | ID: covidwho-1427482

ABSTRACT

BACKGROUND: Despite several outbreaks of SARS-CoV-2 amongst healthcare personnel (HCP) exposed to COVID-19 patients globally, risk factors for transmission remain poorly understood. METHODS: We conducted an outbreak investigation and case-control study to evaluate SARS-CoV-2 transmission risk in an outbreak among HCP at an academic medical center in California that was confirmed by whole genome sequencing. RESULTS: A total of 7/9 cases and 93/182 controls completed a voluntary survey about risk factors. Compared to controls, cases reported significantly more patient contact time. Cases were also significantly more likely to have performed airway procedures on the index patient, particularly placing the patient on high flow nasal cannula, continuous positive airway pressure (CPAP), or bilevel positive airway pressure (BiPAP) (OR = 11.6; 95% CI = 1.7 -132.1). DISCUSSION: This study highlights the risk of nosocomial infection of SARS-CoV-2 from patients who become infectious midway into their hospitalization. Our findings also reinforce the importance of patient contact time and aerosol-generating procedures as key risk factors for HCP infection with SARS-CoV-2. CONCLUSIONS: Re-testing patients for SARS-CoV-2 after admission in suspicious cases and using N95 masks for all aerosol-generating procedures regardless of initial patient SARS-CoV-2 test results can help reduce the risk of SARS-COV-2 transmission to HCP.


Subject(s)
COVID-19 , SARS-CoV-2 , Case-Control Studies , Delivery of Health Care , Disease Outbreaks , Health Personnel , Humans , Risk Factors , Tertiary Care Centers
15.
EBioMedicine ; 67: 103355, 2021 May.
Article in English | MEDLINE | ID: covidwho-1385438

ABSTRACT

BACKGROUND: There is increasing concern that persistent infection of SARS-CoV-2 within immunocompromised hosts could serve as a reservoir for mutation accumulation and subsequent emergence of novel strains with the potential to evade immune responses. METHODS: We describe three patients with acute lymphoblastic leukemia who were persistently positive for SARS-CoV-2 by real-time polymerase chain reaction. Viral viability from longitudinally-collected specimens was assessed. Whole-genome sequencing and serological studies were performed to measure viral evolution and evidence of immune escape. FINDINGS: We found compelling evidence of ongoing replication and infectivity for up to 162 days from initial positive by subgenomic RNA, single-stranded RNA, and viral culture analysis. Our results reveal a broad spectrum of infectivity, host immune responses, and accumulation of mutations, some with the potential for immune escape. INTERPRETATION: Our results highlight the potential need to reassess infection control precautions in the management and care of immunocompromised patients. Routine surveillance of mutations and evaluation of their potential impact on viral transmission and immune escape should be considered.


Subject(s)
COVID-19/immunology , Immune Evasion , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/virology , SARS-CoV-2/genetics , COVID-19/virology , Child, Preschool , Evolution, Molecular , Female , Genome, Viral , High-Throughput Nucleotide Sequencing , Humans , Immunity, Humoral , Male , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , SARS-CoV-2/classification , SARS-CoV-2/immunology , Sequence Analysis, RNA , Whole Genome Sequencing , Young Adult
17.
J Clin Virol ; 127: 104383, 2020 06.
Article in English | MEDLINE | ID: covidwho-1385847

ABSTRACT

BACKGROUND: Numerous nucleic acid amplification assays have recently received emergency use authorization (EUA) for the diagnosis of SARS-CoV-2 infection, and there is a need to assess their test performance relative to one another. OBJECTIVES: The aim of this study was to compare the test performance of the Hologic Panther Fusion SARS-CoV-2 assay targeting two regions of open reading frame 1ab (ORF1ab) to a high complexity molecular-based, laboratory-developed EUA from Stanford Health Care (SHC) targeting the SARS-CoV-2 envelope (E) gene. STUDY DESIGN: We performed a diagnostic comparison study by testing nasopharyngeal samples on the two assays. Assay agreement was assessed by overall percent agreement and Cohen's kappa coefficient. RESULTS: A total of 184 nasopharyngeal samples were tested using the two assays, of which 180 showed valid results and were included for the comparative analysis. Overall percent agreement between the assays was 98.3 % (95 % confidence interval (CI) 95.2-99.7) and kappa coefficient was 0.97 (95 % CI 0.93-1.0). One sample was detected on the SHC laboratory developed test (LDT) and not on the Panther Fusion, and had a Ct of 35.9. Conversely, 2 samples were detected on the Panther Fusion and not on the LDT, and had Ct values of 37.2 and 36.6. CONCLUSION: The Panther Fusion SARS-CoV-2 assay and the SHC LDT perform similarly on clinical nasopharyngeal swab specimens. Other considerations, including reagent availability, turnaround time, labor requirements, cost and instrument throughput should guide the decision of which assay to perform.


Subject(s)
Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Pneumonia, Viral/diagnosis , Reagent Kits, Diagnostic/standards , Viral Envelope Proteins/isolation & purification , Betacoronavirus/genetics , COVID-19 , Coronavirus Envelope Proteins , Humans , Nasopharynx/virology , Pandemics , Reproducibility of Results , SARS-CoV-2 , Viral Envelope Proteins/genetics
19.
JAMA ; 326(6): 490-498, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1363618

ABSTRACT

Importance: Azithromycin has been hypothesized to have activity against SARS-CoV-2. Objective: To determine whether oral azithromycin in outpatients with SARS-CoV-2 infection leads to absence of self-reported COVID-19 symptoms at day 14. Design, Setting, and Participants: Randomized clinical trial of azithromycin vs matching placebo conducted from May 2020 through March 2021. Outpatients from the US were enrolled remotely via internet-based surveys and followed up for 21 days. Eligible participants had a positive SARS-CoV-2 diagnostic test result (nucleic acid amplification or antigen) within 7 days prior to enrollment, were aged 18 years or older, and were not hospitalized at the time of enrollment. Among 604 individuals screened, 297 were ineligible, 44 refused participation, and 263 were enrolled. Participants, investigators, and study staff were masked to treatment randomization. Interventions: Participants were randomized in a 2:1 fashion to a single oral 1.2-g dose of azithromycin (n = 171) or matching placebo (n = 92). Main Outcomes and Measures: The primary outcome was absence of self-reported COVID-19 symptoms at day 14. There were 23 secondary clinical end points, including all-cause hospitalization at day 21. Results: Among 263 participants who were randomized (median age, 43 years; 174 [66%] women; 57% non-Hispanic White and 29% Latinx/Hispanic), 76% completed the trial. The trial was terminated by the data and safety monitoring committee for futility after the interim analysis. At day 14, there was no significant difference in proportion of participants who were symptom free (azithromycin: 50%; placebo: 50%; prevalence difference, 0%; 95% CI, -14% to 15%; P > .99). Of 23 prespecified secondary clinical end points, 18 showed no significant difference. By day 21, 5 participants in the azithromycin group had been hospitalized compared with 0 in the placebo group (prevalence difference, 4%; 95% CI, -1% to 9%; P = .16). Conclusions and Relevance: Among outpatients with SARS-CoV-2 infection, treatment with a single dose of azithromycin compared with placebo did not result in greater likelihood of being symptom free at day 14. These findings do not support the routine use of azithromycin for outpatient SARS-CoV-2 infection. Trial Registration: ClinicalTrials.gov Identifier: NCT04332107.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19/drug therapy , SARS-CoV-2 , Administration, Oral , Adult , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Azithromycin/administration & dosage , Azithromycin/adverse effects , COVID-19/complications , Female , Humans , Male , Middle Aged , Outpatients , Symptom Assessment , Treatment Failure
20.
Diagn Microbiol Infect Dis ; 101(4): 115517, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1347571

ABSTRACT

Dengue and COVID-19 cocirculation presents a diagnostic conundrum for physicians evaluating patients with acute febrile illnesses, both in endemic regions and among returning travelers. We present a case of a returning traveler from Pakistan who, following repeated negative SARS-CoV-2 tests, was found to have a Dengue virus serotype 2 infection.


Subject(s)
COVID-19/diagnosis , Dengue/diagnosis , SARS-CoV-2 , Adult , COVID-19/epidemiology , California/epidemiology , Dengue/epidemiology , Dengue Virus/classification , Dengue Virus/genetics , Female , Genome, Viral , Humans , Pakistan/epidemiology , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Serogroup , Travel
SELECTION OF CITATIONS
SEARCH DETAIL
...