Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Emerg Infect Dis ; 29(5): 1033-1037, 2023 05.
Article in English | MEDLINE | ID: covidwho-2292751

ABSTRACT

SARS-CoV-2 transmits principally by air; contact and fomite transmission may also occur. Variants of concern are more transmissible than ancestral SARS-CoV-2. We found indications of possible increased aerosol and surface stability for early variants of concern, but not for the Delta and Omicron variants. Stability changes are unlikely to explain increased transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Respiratory Aerosols and Droplets
3.
Gastro Hep Adv ; 1(5): 844-852, 2022.
Article in English | MEDLINE | ID: covidwho-1959542

ABSTRACT

Background and Aims: Recent evidence suggests that the gut is an additional target for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, whether SARS-CoV-2 spreads via gastrointestinal secretions remains unclear. To determine the prevalence of gastrointestinal SARS-CoV-2 infection in asymptomatic subjects, we analyzed gastrointestinal biopsy and liquid samples from endoscopy patients for the presence of SARS-CoV-2. Methods: We enrolled 100 endoscopic patients without known SARS-CoV-2 infection (cohort A) and 12 patients with a previous COVID-19 diagnosis (cohort B) in a cohort study performed at a regional hospital. Gastrointestinal biopsies and fluids were screened for SARS-CoV-2 by polymerase chain reaction (PCR), immunohistochemistry, and virus isolation assay, and the stability of SARS-CoV-2 in gastrointestinal liquids in vitro was analyzed. Results: SARS-CoV-2 ribonucleic acid was detected by PCR in the colonic tissue of 1/100 patients in cohort A. In cohort B, 3 colonic liquid samples tested positive for SARS-CoV-2 by PCR and viral nucleocapsid protein was detected in the epithelium of the respective biopsy samples. However, no infectious virions were recovered from any samples. In vitro exposure of SARS-CoV-2 to colonic liquid led to a 4-log-fold reduction of infectious SARS-CoV-2 within 1 hour (P ≤ .05). Conclusion: Overall, the persistent detection of SARS-CoV-2 in endoscopy samples after resolution of COVID-19 points to the gut as a long-term reservoir for SARS-CoV-2. Since no infectious virions were recovered and SARS-CoV-2 was rapidly inactivated in the presence of colon liquids, it is unlikely that performing endoscopic procedures is associated with a significant infection risk due to undiagnosed asymptomatic or persistent gastrointestinal SARS-CoV-2 infections.

5.
Nat Rev Microbiol ; 20(5): 299-314, 2022 05.
Article in English | MEDLINE | ID: covidwho-1526083

ABSTRACT

In the past two decades, three coronaviruses with ancestral origins in bats have emerged and caused widespread outbreaks in humans, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first SARS epidemic in 2002-2003, the appreciation of bats as key hosts of zoonotic coronaviruses has advanced rapidly. More than 4,000 coronavirus sequences from 14 bat families have been identified, yet the true diversity of bat coronaviruses is probably much greater. Given that bats are the likely evolutionary source for several human coronaviruses, including strains that cause mild upper respiratory tract disease, their role in historic and future pandemics requires ongoing investigation. We review and integrate information on bat-coronavirus interactions at the molecular, tissue, host and population levels. We identify critical gaps in knowledge of bat coronaviruses, which relate to spillover and pandemic risk, including the pathways to zoonotic spillover, the infection dynamics within bat reservoir hosts, the role of prior adaptation in intermediate hosts for zoonotic transmission and the viral genotypes or traits that predict zoonotic capacity and pandemic potential. Filling these knowledge gaps may help prevent the next pandemic.


Subject(s)
COVID-19 , Chiroptera , Animals , Evolution, Molecular , Humans , Phylogeny , SARS-CoV-2/genetics
6.
Restor Ecol ; 29(4): e13357, 2021 May.
Article in English | MEDLINE | ID: covidwho-1501493

ABSTRACT

Ecological restoration should be regarded as a public health service. Unfortunately, the lack of quantitative linkages between environmental and human health has limited recognition of this principle. The advent of the COVID-19 pandemic provides the impetus for further discussion. We propose ecological countermeasures as highly targeted, landscape-based interventions to arrest the drivers of land use-induced zoonotic spillover. We provide examples of ecological restoration activities that reduce zoonotic disease risk and a five-point action plan at the human-ecosystem health nexus. In conclusion, we make the case that ecological countermeasures are a tenet of restoration ecology with human health goals.

7.
Viruses ; 13(7)2021 07 02.
Article in English | MEDLINE | ID: covidwho-1445747

ABSTRACT

Pandemics are a consequence of a series of processes that span scales from viral biology at 10-9 m to global transmission at 106 m. The pathogen passes from one host species to another through a sequence of events that starts with an infected reservoir host and entails interspecific contact, innate immune responses, receptor protein structure within the potential host, and the global spread of the novel pathogen through the naive host population. Each event presents a potential barrier to the onward passage of the virus and should be characterized with an integrated transdisciplinary approach. Epidemic control is based on the prevention of exposure, infection, and disease. However, the ultimate pandemic prevention is prevention of the spillover event itself. Here, we focus on the potential for preventing the spillover of henipaviruses, a group of viruses derived from bats that frequently cross species barriers, incur high human mortality, and are transmitted among humans via stuttering chains. We outline the transdisciplinary approach needed to prevent the spillover process and, therefore, future pandemics.


Subject(s)
Chiroptera/virology , Global Health , Henipavirus Infections/prevention & control , Henipavirus/pathogenicity , Pandemics/prevention & control , Virus Diseases/prevention & control , Zoonoses/virology , Animals , Henipavirus Infections/epidemiology , Henipavirus Infections/immunology , Henipavirus Infections/transmission , Host Specificity , Humans , Immunity, Innate , Nipah Virus/pathogenicity , Virus Diseases/immunology , Virus Diseases/transmission , Zoonoses/prevention & control , Zoonoses/transmission
8.
Ecol Evol ; 11(20): 14012-14023, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1406091

ABSTRACT

The COVID-19 pandemic has highlighted the importance of efficient sampling strategies and statistical methods for monitoring infection prevalence, both in humans and in reservoir hosts. Pooled testing can be an efficient tool for learning pathogen prevalence in a population. Typically, pooled testing requires a second-phase retesting procedure to identify infected individuals, but when the goal is solely to learn prevalence in a population, such as a reservoir host, there are more efficient methods for allocating the second-phase samples.To estimate pathogen prevalence in a population, this manuscript presents an approach for data fusion with two-phased testing of pooled samples that allows more efficient estimation of prevalence with less samples than traditional methods. The first phase uses pooled samples to estimate the population prevalence and inform efficient strategies for the second phase. To combine information from both phases, we introduce a Bayesian data fusion procedure that combines pooled samples with individual samples for joint inferences about the population prevalence.Data fusion procedures result in more efficient estimation of prevalence than traditional procedures that only use individual samples or a single phase of pooled sampling.The manuscript presents guidance on implementing the first-phase and second-phase sampling plans using data fusion. Such methods can be used to assess the risk of pathogen spillover from reservoir hosts to humans, or to track pathogens such as SARS-CoV-2 in populations.

9.
J Anim Ecol ; 90(11): 2609-2622, 2021 11.
Article in English | MEDLINE | ID: covidwho-1288240

ABSTRACT

The spatial organization of populations determines their pathogen dynamics. This is particularly important for communally roosting species, whose aggregations are often driven by the spatial structure of their environment. We develop a spatially explicit model for virus transmission within roosts of Australian tree-dwelling bats (Pteropus spp.), parameterized to reflect Hendra virus. The spatial structure of roosts mirrors three study sites, and viral transmission between groups of bats in trees was modelled as a function of distance between roost trees. Using three levels of tree density to reflect anthropogenic changes in bat habitats, we investigate the potential effects of recent ecological shifts in Australia on the dynamics of zoonotic viruses in reservoir hosts. We show that simulated infection dynamics in spatially structured roosts differ from that of mean-field models for equivalently sized populations, highlighting the importance of spatial structure in disease models of gregarious taxa. Under contrasting scenarios of flying-fox roosting structures, sparse stand structures (with fewer trees but more bats per tree) generate higher probabilities of successful outbreaks, larger and faster epidemics, and shorter virus extinction times, compared to intermediate and dense stand structures with more trees but fewer bats per tree. These observations are consistent with the greater force of infection generated by structured populations with less numerous but larger infected groups, and may flag an increased risk of pathogen spillover from these increasingly abundant roost types. Outputs from our models contribute insights into the spread of viruses in structured animal populations, like communally roosting species, as well as specific insights into Hendra virus infection dynamics and spillover risk in a situation of changing host ecology. These insights will be relevant for modelling other zoonotic viruses in wildlife reservoir hosts in response to habitat modification and changing populations, including coronaviruses like SARS-CoV-2.


Subject(s)
COVID-19 , Chiroptera , Viruses , Animals , Australia , Ecosystem , SARS-CoV-2
10.
Lancet Planet Health ; 5(4): e237-e245, 2021 04.
Article in English | MEDLINE | ID: covidwho-1118743

ABSTRACT

The rapid global spread and human health impacts of SARS-CoV-2, the virus that causes COVID-19, show humanity's vulnerability to zoonotic disease pandemics. Although anthropogenic land use change is known to be the major driver of zoonotic pathogen spillover from wildlife to human populations, the scientific underpinnings of land use-induced zoonotic spillover have rarely been investigated from the landscape perspective. We call for interdisciplinary collaborations to advance knowledge on land use implications for zoonotic disease emergence with a view toward informing the decisions needed to protect human health. In particular, we urge a mechanistic focus on the zoonotic pathogen infect-shed-spill-spread cascade to enable protection of landscape immunity-the ecological conditions that reduce the risk of pathogen spillover from reservoir hosts-as a conservation and biosecurity priority. Results are urgently needed to formulate an integrated, holistic set of science-based policy and management measures that effectively and cost-efficiently minimise zoonotic disease risk. We consider opportunities to better institute the necessary scientific collaboration, address primary technical challenges, and advance policy and management issues that warrant particular attention to effectively address health security from local to global scales.


Subject(s)
Animals, Wild/virology , Ecosystem , Environmental Policy , Public Health , Zoonoses/epidemiology , Animals , Biodiversity , COVID-19 , Humans , Intersectoral Collaboration , SARS-CoV-2/pathogenicity
11.
PLoS Pathog ; 16(9): e1008758, 2020 09.
Article in English | MEDLINE | ID: covidwho-742547

ABSTRACT

The COVID-19 pandemic highlights the substantial public health, economic, and societal consequences of virus spillover from a wildlife reservoir. Widespread human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also presents a new set of challenges when considering viral spillover from people to naïve wildlife and other animal populations. The establishment of new wildlife reservoirs for SARS-CoV-2 would further complicate public health control measures and could lead to wildlife health and conservation impacts. Given the likely bat origin of SARS-CoV-2 and related beta-coronaviruses (ß-CoVs), free-ranging bats are a key group of concern for spillover from humans back to wildlife. Here, we review the diversity and natural host range of ß-CoVs in bats and examine the risk of humans inadvertently infecting free-ranging bats with SARS-CoV-2. Our review of the global distribution and host range of ß-CoV evolutionary lineages suggests that 40+ species of temperate-zone North American bats could be immunologically naïve and susceptible to infection by SARS-CoV-2. We highlight an urgent need to proactively connect the wellbeing of human and wildlife health during the current pandemic and to implement new tools to continue wildlife research while avoiding potentially severe health and conservation impacts of SARS-CoV-2 "spilling back" into free-ranging bat populations.


Subject(s)
Animals, Wild/virology , Betacoronavirus/pathogenicity , Coronavirus Infections/virology , Pneumonia, Viral/virology , Animals , COVID-19 , Chiroptera/virology , Genome, Viral/genetics , Host Specificity/physiology , Humans , Pandemics , SARS-CoV-2
12.
Nat Rev Microbiol ; 18(8): 461-471, 2020 08.
Article in English | MEDLINE | ID: covidwho-596755

ABSTRACT

Most viral pathogens in humans have animal origins and arose through cross-species transmission. Over the past 50 years, several viruses, including Ebola virus, Marburg virus, Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory coronavirus (MERS-CoV) and SARS-CoV-2, have been linked back to various bat species. Despite decades of research into bats and the pathogens they carry, the fields of bat virus ecology and molecular biology are still nascent, with many questions largely unexplored, thus hindering our ability to anticipate and prepare for the next viral outbreak. In this Review, we discuss the latest advancements and understanding of bat-borne viruses, reflecting on current knowledge gaps and outlining the potential routes for future research as well as for outbreak response and prevention efforts.


Subject(s)
Biodiversity , Chiroptera/virology , Communicable Diseases, Emerging/virology , Virus Diseases/virology , Virus Physiological Phenomena , Zoonoses/virology , Animals , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/transmission , Disease Outbreaks/prevention & control , Humans , Research/trends , Virus Diseases/prevention & control , Zoonoses/prevention & control , Zoonoses/transmission
SELECTION OF CITATIONS
SEARCH DETAIL