Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Eur J Heart Fail ; 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2059378

ABSTRACT

Over 10 million doses of COVID-19 vaccines based on RNA technology, viral vectors, recombinant protein, and inactivated virus have been administered worldwide. Although generally very safe, post-vaccine myocarditis can result from adaptive humoral and cellular, cardiac-specific inflammation within days and weeks of vaccination. Rates of vaccine-associated myocarditis vary by age and sex with the highest rates in males between 12 and 39 years. The clinical course is generally mild with rare cases of left ventricular dysfunction, heart failure and arrhythmias. Mild cases are likely underdiagnosed as cardiac magnetic resonance imaging (CMR) is not commonly performed even in suspected cases and not at all in asymptomatic and mildly symptomatic patients. Hospitalization of symptomatic patients with electrocardiographic changes and increased plasma troponin levels is considered necessary in the acute phase to monitor for arrhythmias and potential decline in left ventricular function. In addition to evaluation for symptoms, electrocardiographic changes and elevated troponin levels, CMR is the best non-invasive diagnostic tool with endomyocardial biopsy being restricted to severe cases with heart failure and/or arrhythmias. The management beyond guideline-directed treatment of heart failure and arrhythmias includes non-specific measures to control pain. Anti-inflammatory drugs such as non-steroidal anti-inflammatory drugs, and corticosteroids have been used in more severe cases, with only anecdotal evidence for their effectiveness. In all age groups studied, the overall risks of SARS-CoV-2 infection-related hospitalization and death are hugely greater than the risks from post-vaccine myocarditis. This consensus statement serves as a practical resource for physicians in their clinical practice, to understand, diagnose, and manage affected patients. Furthermore, it is intended to stimulate research in this area.

2.
Lancet Infect Dis ; 22(12): e349-e358, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2031764

ABSTRACT

The largest outbreak of monkeypox in history began in May, 2022, and has rapidly spread across the globe ever since. The purpose of this Review is to briefly describe human immune responses to orthopoxviruses; provide an overview of the vaccines available to combat this outbreak; and discuss the various clinical data and animal studies evaluating protective immunity to monkeypox elicited by vaccinia virus-based smallpox vaccines, address ongoing concerns regarding the outbreak, and provide suggestions for the appropriate use of vaccines as an outbreak control measure. Data showing clinical effectiveness (~85%) of smallpox vaccines against monkeypox come from surveillance studies conducted in central Africa in the 1980s and later during outbreaks in the same area. These data are supported by a large number of animal studies (primarily in non-human primates) with live virus challenge by various inoculation routes. These studies uniformly showed a high degree of protection and immunity against monkeypox virus following vaccination with various smallpox vaccines. Smallpox vaccines represent an effective countermeasure that can be used to control monkeypox outbreaks. However, smallpox vaccines do cause side-effects and the replication-competent, second-generation vaccines have contraindications. Third-generation vaccines, although safer for use in immunocompromised populations, require two doses, which is an impediment to rapid outbreak response. Lessons learned from the COVID-19 pandemic should be used to inform our collective response to this monkeypox outbreak and to future outbreaks.


Subject(s)
COVID-19 , Monkeypox , Smallpox Vaccine , Smallpox , Animals , Humans , Monkeypox/epidemiology , Monkeypox/prevention & control , Smallpox/prevention & control , Pandemics
3.
Eur J Heart Fail ; 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2013470

ABSTRACT

Over 10 million doses of COVID-19 vaccines based on RNA technology, viral vectors, recombinant protein, and inactivated virus have been administered worldwide. Although generally very safe, post-vaccine myocarditis can result from adaptive humoral and cellular, cardiac-specific inflammation within days and weeks of vaccination. Rates of vaccine-associated myocarditis vary by age and sex with the highest rates in males between 12 and 39 years. The clinical course is generally mild with rare cases of left ventricular dysfunction, heart failure and arrhythmias. Mild cases are likely underdiagnosed as cardiac magnetic resonance imaging (CMR) is not commonly performed even in suspected cases and not at all in asymptomatic and mildly symptomatic patients. Hospitalization of symptomatic patients with electrocardiographic changes and increased plasma troponin levels is considered necessary in the acute phase to monitor for arrhythmias and potential decline in left ventricular function. In addition to evaluation for symptoms, electrocardiographic changes and elevated troponin levels, CMR is the best non-invasive diagnostic tool with endomyocardial biopsy being restricted to severe cases with heart failure and/or arrhythmias. The management beyond guideline-directed treatment of heart failure and arrhythmias includes non-specific measures to control pain. Anti-inflammatory drugs such as non-steroidal anti-inflammatory drugs, and corticosteroids have been used in more severe cases, with only anecdotal evidence for their effectiveness. In all age groups studied, the overall risks of SARS-CoV-2 infection-related hospitalization and death are hugely greater than the risks from post-vaccine myocarditis. This consensus statement serves as a practical resource for physicians in their clinical practice, to understand, diagnose, and manage affected patients. Furthermore, it is intended to stimulate research in this area.

4.
J Infect Dis ; 226(1): 23-31, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1992205

ABSTRACT

The durability of protective humoral immunity after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and infection is largely dependent on the generation and persistence of antigen-specific isotype-switched memory B cells (MBCs) and long-lived plasma cells that reside in the bone marrow and secrete high-affinity neutralizing antibodies. The reactivity of vaccine-induced MBCs to emerging clinically significant SARS-CoV-2 variants of concern (VoCs) is largely unknown. In a longitudinal cohort study (up to 6 months following coronavirus disease 2019 messenger RNA vaccination), we measured MBCs in concert with other functional antibody measures. We found statistically significant differences between the frequencies of MBCs responding to homologous and VoC (Beta, Gamma, and Delta) receptor-binding domains after vaccination that persisted over time. In concert with a waning antibody response, the reduced MBC response to VoCs could translate to a weaker subsequent recall immune response and increased susceptibility to the emerging SARS-CoV-2 variant strains after vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , Humans , Longitudinal Studies , RNA, Messenger , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination
5.
Clin Infect Dis ; 75(Supplement_1): S11-S17, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1992151

ABSTRACT

Within 2 years after the start of the coronavirus disease 2019 (COVID-19) pandemic, novel severe acute respiratory syndrome coronavirus 2 vaccines were developed, rigorously evaluated in large phase 3 trials, and administered to more than 5 billion individuals globally. However, adverse events of special interest (AESIs) have been described post-implementation, including myocarditis after receipt of messenger RNA (mRNA) vaccines and thrombosis with thrombocytopenia syndrome after receipt of adenoviral vector vaccines. AESIs are rare (<1 to 10/100 000 vaccinees) and less frequent than COVID-19 complications, though they have associated morbidity and mortality. The diversity of COVID-19 vaccine platforms (eg, mRNA, viral vector, protein) and rates of AESIs both between and within platforms (eg, higher rate of myocarditis after mRNA-1273 vs BNT162b2 vaccines) present an important opportunity to advance vaccine safety science. The International Network of Special Immunization Services has been formed with experts in vaccine safety, systems biology, and other relevant disciplines to study cases of AESIs and matched controls to uncover the pathogenesis of rare AESIs and inform vaccine development.


Subject(s)
COVID-19 , Myocarditis , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunization , Pandemics/prevention & control , RNA, Messenger
6.
Sci Rep ; 12(1): 10946, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1908278

ABSTRACT

Severe adverse events (AEs) after COVID-19 vaccination are not well studied in randomized controlled trials (RCTs) due to rarity and short follow-up. To monitor the safety of COVID-19 vaccines ("Pfizer" vaccine dose 1 and 2, "Moderna" vaccine dose 1 and 2, and "Janssen" vaccine single dose) in the U.S., especially regarding severe AEs, we compare the relative rankings of these vaccines using both RCT and the Vaccine Adverse Event Reporting System (VAERS) data. The risks of local and systemic AEs were assessed from the three pivotal COVID-19 vaccine trials and also calculated in the VAERS cohort consisting of 559,717 reports between December 14, 2020 and September 17, 2021. AE rankings of the five vaccine groups calculated separately by RCT and VAERS were consistent, especially for systemic AEs. For severe AEs reported in VAERS, the reported risks of thrombosis and GBS after Janssen vaccine were highest. The reported risk of shingles after the first dose of Moderna vaccine was highest, followed by the second dose of the Moderna vaccine. The reported risk of myocarditis was higher after the second dose of Pfizer and Moderna vaccines. The reported risk of anaphylaxis was higher after the first dose of Pfizer vaccine. Limitations of this study are the inherent biases of the spontaneous reporting system data, and only including three pivotal RCTs and no comparison with other active vaccine safety surveillance systems.


Subject(s)
COVID-19 Vaccines , Vaccination , Adverse Drug Reaction Reporting Systems , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Randomized Controlled Trials as Topic , United States/epidemiology , Vaccination/adverse effects
7.
Clin Infect Dis ; 75(Supplement_1): S11-S17, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1890896

ABSTRACT

Within 2 years after the start of the coronavirus disease 2019 (COVID-19) pandemic, novel severe acute respiratory syndrome coronavirus 2 vaccines were developed, rigorously evaluated in large phase 3 trials, and administered to more than 5 billion individuals globally. However, adverse events of special interest (AESIs) have been described post-implementation, including myocarditis after receipt of messenger RNA (mRNA) vaccines and thrombosis with thrombocytopenia syndrome after receipt of adenoviral vector vaccines. AESIs are rare (<1 to 10/100 000 vaccinees) and less frequent than COVID-19 complications, though they have associated morbidity and mortality. The diversity of COVID-19 vaccine platforms (eg, mRNA, viral vector, protein) and rates of AESIs both between and within platforms (eg, higher rate of myocarditis after mRNA-1273 vs BNT162b2 vaccines) present an important opportunity to advance vaccine safety science. The International Network of Special Immunization Services has been formed with experts in vaccine safety, systems biology, and other relevant disciplines to study cases of AESIs and matched controls to uncover the pathogenesis of rare AESIs and inform vaccine development.


Subject(s)
COVID-19 , Myocarditis , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunization , Pandemics/prevention & control , RNA, Messenger
9.
J Infect Dis ; 226(1): 23-31, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1684708

ABSTRACT

The durability of protective humoral immunity after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and infection is largely dependent on the generation and persistence of antigen-specific isotype-switched memory B cells (MBCs) and long-lived plasma cells that reside in the bone marrow and secrete high-affinity neutralizing antibodies. The reactivity of vaccine-induced MBCs to emerging clinically significant SARS-CoV-2 variants of concern (VoCs) is largely unknown. In a longitudinal cohort study (up to 6 months following coronavirus disease 2019 messenger RNA vaccination), we measured MBCs in concert with other functional antibody measures. We found statistically significant differences between the frequencies of MBCs responding to homologous and VoC (Beta, Gamma, and Delta) receptor-binding domains after vaccination that persisted over time. In concert with a waning antibody response, the reduced MBC response to VoCs could translate to a weaker subsequent recall immune response and increased susceptibility to the emerging SARS-CoV-2 variant strains after vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , Humans , Longitudinal Studies , RNA, Messenger , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination
10.
Vaccine ; 38(51): 8185-8193, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-997580

ABSTRACT

BACKGROUND: While administration of the measles-mumps-rubella (MMR-II®) vaccine has been effective at preventing rubella infection in the United States, the durability of humoral immunity to the rubella component of MMR vaccine has not been widely studied among older adolescents and adults. METHODS: In this longitudinal study, we sought to assess the durability of rubella virus (RV)-specific humoral immunity in a healthy population (n = 98) of adolescents and young adults at two timepoints: ~7 and ~17 years after two doses of MMR-II® vaccination. Levels of circulating antibodies specific to RV were measured by ELISA and an immune-colorimetric neutralization assay. RV-specific memory B cell responses were also measured by ELISpot. RESULTS: Rubella-specific IgG antibody titers, neutralizing antibody titers, and memory B cell responses declined with increasing time since vaccination; however, these decreases were relatively moderate. Memory B cell responses exhibited a greater decline in men compared to women. CONCLUSIONS: Collectively, rubella-specific humoral immunity declines following vaccination, although subjects' antibody titers remain well above the currently recognized threshold for protective immunity. Clinical correlates of protection based on neutralizing antibody titer and memory B cell ELISpot response should be defined.


Subject(s)
Immunity, Humoral , Measles-Mumps-Rubella Vaccine/immunology , Rubella/immunology , Adolescent , Adult , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Female , Humans , Immunoglobulin G/blood , Male , Measles-Mumps-Rubella Vaccine/pharmacology , Rubella/prevention & control , Time Factors , Vaccination , Young Adult
13.
Vaccine ; 39(40): 6004-6012, 2021 09 24.
Article in English | MEDLINE | ID: covidwho-915720

ABSTRACT

Given the social and economic upheavals caused by the COVID-19 pandemic, political leaders, health officials, and members of the public are eager for solutions. One of the most promising, if they can be successfully developed, is vaccines. While the technological development of such countermeasures is currently underway, a key social gap remains. Past experience in routine and crisis contexts demonstrates that uptake of vaccines is more complicated than simply making the technology available. Vaccine uptake, and especially the widespread acceptance of vaccines, is a social endeavor that requires consideration of human factors. To provide a starting place for this critical component of a future COVID-19 vaccination campaign in the United States, the 23-person Working Group on Readying Populations for COVID-19 Vaccines was formed. One outcome of this group is a synthesis of the major challenges and opportunities associated with a future COVID-19 vaccination campaign and empirically-informed recommendations to advance public understanding of, access to, and acceptance of vaccines that protect against SARS-CoV-2. While not inclusive of all possible steps than could or should be done to facilitate COVID-19 vaccination, the working group believes that the recommendations provided are essential for a successful vaccination program.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Humans , Pandemics/prevention & control , SARS-CoV-2 , United States , Vaccination
14.
Viruses ; 12(10)2020 10 20.
Article in English | MEDLINE | ID: covidwho-895402

ABSTRACT

On average, there are 3-5 million severe cases of influenza virus infections globally each year. Seasonal influenza vaccines provide limited protection against divergent influenza strains. Therefore, the development of a universal influenza vaccine is a top priority for the NIH. Here, we report a comprehensive summary of all universal influenza vaccines that were tested in clinical trials during the 2010-2019 decade. Of the 1597 studies found, 69 eligible clinical trials, which investigated 27 vaccines, were included in this review. Information from each trial was compiled for vaccine target, vaccine platform, adjuvant inclusion, clinical trial phase, and results. As we look forward, there are currently three vaccines in phase III clinical trials which could provide significant improvement over seasonal influenza vaccines. This systematic review of universal influenza vaccine clinical trials during the 2010-2019 decade provides an update on the progress towards an improved influenza vaccine.


Subject(s)
Clinical Trials as Topic , Influenza Vaccines , Influenza, Human , Adjuvants, Immunologic , Animals , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Drug Delivery Systems , Humans , Influenza Vaccines/immunology , Influenza Vaccines/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/virology , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology
15.
Vaccine ; 39(37): 5240-5250, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-624811

ABSTRACT

Given our global interconnectedness, the COVID-19 pandemic highlights the urgency of building a global system that can support both routine and pandemic/epidemic adult immunization. As such, a framework to recommend vaccines and build robust platforms to deliver them to protect the rapidly expanding demographic of older adults is needed. Adult immunization as a strategy has the broad potential to preserve and improve medical, social, and economic outcomes, including maintaining functional ability that benefits older adults, their families, communities, and countries. While we will soon have multiple vaccines against COVID-19, we must recognize that we already have a variety of vaccines against other pathogens that can keep adults healthier. They can prevent simultaneous co-infection with COVID-19, and may favorably impact- the outcome of a COVID-19 illness. Further, administering a vaccine against COVID-19 requires planning now to determine delivery strategies impacting how older adults will be immunized in a timely manner. A group of international experts with various backgrounds from health and aging disciplines met to discuss the evidence case for adult immunization and crucial knowledge gaps that must be filled in order to implement effective policies and programs for older adult immunization. This group, coming together as the International Council on Adult Immunization (ICAI), outlined a high-level roadmap to catalyze action, provide policy guidance, and envision a global adult immunization platform that can be adapted by countries to fit their local contexts. Further meetings centered around the value of adult immunization, particularly in the context of COVID-19. There was agreement that programs to deliver existing influenza, pneumococcal, herpes zoster vaccines, and future COVID-19 vaccines to over a billion older adults who are at substantially higher risk of death and disability due to vaccine-preventable diseases are more urgent than ever before. Here we present a proposed framework for delivering routine and pandemic vaccines. We call upon the global community and governments to prioritize action for integrating robust adult immunization programs into the public health agenda.


Subject(s)
COVID-19 , Influenza Vaccines , Vaccines , Aged , COVID-19 Vaccines , Humans , Immunization , Immunization Programs , Pandemics , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL