Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Am J Respir Crit Care Med ; 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1909946

ABSTRACT

RATIONALE: A common MUC5B gene polymorphism, rs35705950-T, is associated with idiopathic pulmonary fibrosis (IPF), but its role in SARS-CoV-2 infection and disease severity is unclear. OBJECTIVES: To assess whether rs35705950-T confers differential risk for clinical outcomes associated with COVID-19 infection among participants in the Million Veteran Program (MVP). METHODS: The MUC5B rs35705950-T allele was directly genotyped among MVP participants; clinical events and comorbidities were extracted from the electronic health records. Associations between the incidence or severity of COVID-19 and rs35705950-T were analyzed within each ancestry group in the MVP followed by trans-ancestry meta-analysis. Replication and joint meta-analysis were conducted using summary statistics from the COVID-19 Host Genetics Initiative (HGI). Sensitivity analyses with adjustment for additional covariates (BMI, Charlson comorbidity index, smoking, asbestosis, rheumatoid arthritis with interstitial lung disease and IPF) and associations with post-COVID-19 pneumonia were performed in MVP subjects. MEASUREMENTS AND MAIN RESULTS: The rs35705950-T allele was associated with fewer COVID-19 hospitalizations (Ncases=4,325/, Ncontrols=507,640; OR=0.89 [0.82-0.97], p=6.86 x 10-03) in trans-ancestry meta-analysis within MVP and joint meta-analyses with the HGI (Ncases=13,320, Ncontrols=1,508,841; OR=0.90 [0.86-0.95], p =8.99 x 10-05). The rs35705950-T allele was not associated reduced COVID-19 positivity in trans-ancestry meta-analysis within MVP (Ncases=19,168/Ncontrols=492,854; OR=0.98 [0.95-1.01], p=0.06) but was nominally significant (p<0.05) in the joint meta-analysis with HGI (Ncases=44,820/Ncontrols=1,775,827; OR=0.97 [0.95-1]; p=0.03). We did not observe associations with severe outcomes or mortality. Among MVP individuals of European ancestry, rs35705950-T was associated with fewer post-COVID-19 pneumonia events (OR=0.82 [0.72-0.93], p=0.001). CONCLUSIONS: The MUC5B variant rs35705950-T may confer protection in COVID-19 hospitalizations. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2.
Int J Epidemiol ; 2022 Jun 25.
Article in English | MEDLINE | ID: covidwho-1908816

ABSTRACT

BACKGROUND: Due to its large impact on human health, socio-economic status (SES) could at least partially influence the established association between obesity and coronavirus disease 2019 (COVID-19) severity. To estimate the independent effect of body size and SES on the clinical manifestations of COVID-19, we conducted a Mendelian randomization (MR) study. METHODS: Applying two-sample MR approaches, we evaluated the effects of body mass index (BMI, n = 322 154), waist circumference (WC, n = 234 069), hip circumference (n = 213 019) and waist-hip ratio (n = 210 088) with respect to three COVID-19 outcomes: severe respiratory COVID-19 (cases = 8779, controls = 1 000 875), hospitalized COVID-19 (cases = 17 992, controls = 1 810 493) and COVID-19 infection (cases = 87 870, controls = 2 210 804). Applying a multivariable MR (MVMR) approach, we estimated the effect of these anthropometric traits on COVID-19 outcomes accounting for the effect of SES assessed as household income (n = 286 301). RESULTS: BMI and WC were associated with severe respiratory COVID-19 [BMI: odds ratio (OR) = 1.51, CI = 1.24-1.84, P = 3.01e-05; WC: OR = 1.48, 95% CI = 1.15-1.91, P = 0.0019] and hospitalized COVID-19 (BMI: OR = 1.50, 95% CI = 1.32-1.72, P = 8.83e-10; WC: OR = 1.41, 95% CI = 1.20-1.67, P = 3.72e-05). Conversely, income was associated with lower odds of severe respiratory (OR = 0.70, 95% CI = 0.53-0.93, P = 0.015) and hospitalized COVID-19 (OR = 0.78, 95% CI = 0.66-0.92, P = 0.003). MVMR analyses showed that the effect of these obesity-related traits on increasing the odds of COVID-19 negative outcomes becomes null when accounting for income. Conversely, the association of income with lower odds of COVID-19 negative outcomes is not affected when including the anthropometric traits in the multivariable model. CONCLUSION: Our findings indicate that SES contributes to the effect of obesity-related traits on COVID-19 severity and hospitalization.

3.
JAMA Intern Med ; 182(8): 796-804, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1905752

ABSTRACT

Importance: Sickle cell trait (SCT), defined as the presence of 1 hemoglobin beta sickle allele (rs334-T) and 1 normal beta allele, is prevalent in millions of people in the US, particularly in individuals of African and Hispanic ancestry. However, the association of SCT with COVID-19 is unclear. Objective: To assess the association of SCT with the prepandemic health conditions in participants of the Million Veteran Program (MVP) and to assess the severity and sequelae of COVID-19. Design, Setting, and Participants: COVID-19 clinical data include 2729 persons with SCT, of whom 353 had COVID-19, and 129 848 SCT-negative individuals, of whom 13 488 had COVID-19. Associations between SCT and COVID-19 outcomes were examined using firth regression. Analyses were performed by ancestry and adjusted for sex, age, age squared, and ancestral principal components to account for population stratification. Data for the study were collected between March 2020 and February 2021. Exposures: The hemoglobin beta S (HbS) allele (rs334-T). Main Outcomes and Measures: This study evaluated 4 COVID-19 outcomes derived from the World Health Organization severity scale and phenotypes derived from International Classification of Diseases codes in the electronic health records. Results: Of the 132 577 MVP participants with COVID-19 data, mean (SD) age at the index date was 64.8 (13.1) years. Sickle cell trait was present in 7.8% of individuals of African ancestry and associated with a history of chronic kidney disease, diabetic kidney disease, hypertensive kidney disease, pulmonary embolism, and cerebrovascular disease. Among the 4 clinical outcomes of COVID-19, SCT was associated with an increased COVID-19 mortality in individuals of African ancestry (n = 3749; odds ratio, 1.77; 95% CI, 1.13 to 2.77; P = .01). In the 60 days following COVID-19, SCT was associated with an increased incidence of acute kidney failure. A counterfactual mediation framework estimated that on average, 20.7% (95% CI, -3.8% to 56.0%) of the total effect of SCT on COVID-19 fatalities was due to acute kidney failure. Conclusions and Relevance: In this genetic association study, SCT was associated with preexisting kidney comorbidities, increased COVID-19 mortality, and kidney morbidity.


Subject(s)
Acute Kidney Injury , COVID-19 , Sickle Cell Trait , Acute Kidney Injury/complications , Acute Kidney Injury/epidemiology , African Americans/genetics , COVID-19/epidemiology , Hemoglobins , Humans , Kidney , Sickle Cell Trait/complications , Sickle Cell Trait/epidemiology , Sickle Cell Trait/genetics
4.
PLoS Genet ; 18(4): e1010113, 2022 04.
Article in English | MEDLINE | ID: covidwho-1817364

ABSTRACT

The study aims to determine the shared genetic architecture between COVID-19 severity with existing medical conditions using electronic health record (EHR) data. We conducted a Phenome-Wide Association Study (PheWAS) of genetic variants associated with critical illness (n = 35) or hospitalization (n = 42) due to severe COVID-19 using genome-wide association summary data from the Host Genetics Initiative. PheWAS analysis was performed using genotype-phenotype data from the Veterans Affairs Million Veteran Program (MVP). Phenotypes were defined by International Classification of Diseases (ICD) codes mapped to clinically relevant groups using published PheWAS methods. Among 658,582 Veterans, variants associated with severe COVID-19 were tested for association across 1,559 phenotypes. Variants at the ABO locus (rs495828, rs505922) associated with the largest number of phenotypes (nrs495828 = 53 and nrs505922 = 59); strongest association with venous embolism, odds ratio (ORrs495828 1.33 (p = 1.32 x 10-199), and thrombosis ORrs505922 1.33, p = 2.2 x10-265. Among 67 respiratory conditions tested, 11 had significant associations including MUC5B locus (rs35705950) with increased risk of idiopathic fibrosing alveolitis OR 2.83, p = 4.12 × 10-191; CRHR1 (rs61667602) associated with reduced risk of pulmonary fibrosis, OR 0.84, p = 2.26× 10-12. The TYK2 locus (rs11085727) associated with reduced risk for autoimmune conditions, e.g., psoriasis OR 0.88, p = 6.48 x10-23, lupus OR 0.84, p = 3.97 x 10-06. PheWAS stratified by ancestry demonstrated differences in genotype-phenotype associations. LMNA (rs581342) associated with neutropenia OR 1.29 p = 4.1 x 10-13 among Veterans of African and Hispanic ancestry but not European. Overall, we observed a shared genetic architecture between COVID-19 severity and conditions related to underlying risk factors for severe and poor COVID-19 outcomes. Differing associations between genotype-phenotype across ancestries may inform heterogenous outcomes observed with COVID-19. Divergent associations between risk for severe COVID-19 with autoimmune inflammatory conditions both respiratory and non-respiratory highlights the shared pathways and fine balance of immune host response and autoimmunity and caution required when considering treatment targets.


Subject(s)
COVID-19 , Veterans , COVID-19/epidemiology , COVID-19/genetics , Genetic Association Studies , Genome-Wide Association Study/methods , Humans , Polymorphism, Single Nucleotide/genetics
5.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327268

ABSTRACT

Genetic predisposition to venous thrombosis may impact COVID-19 infection and its sequelae. Participants in the ongoing prospective cohort study, Million Veteran Program (MVP), who were tested for COVID-19, with European ancestry, were evaluated for associations with polygenic venous thromboembolic risk, Factor V Leiden mutation (FVL) (rs6025) and prothrombin gene 3'-UTR mutation (F2 G20210A)(rs1799963), and their interactions. Logistic regression models assessed genetic associations with VTE diagnosis, COVID-19 (positive) testing rates and outcome severity (modified WHO criteria), and post-test conditions, adjusting for outpatient anticoagulation medication usage, age, sex, and genetic principal components. 108,437 out of 464,961 European American MVP participants were tested for COVID-19 with 9786 (9%) positive. PRS(VTE), FVL, F2 G20210A were not significantly associated with the propensity of being tested for COVID-19. PRS(VTE) was significantly associated with a positive COVID-19 test in F5 wild type (WT) individuals (OR 1.05;95% CI [1.02-1.07]), but not in FVL carriers (0.97, [0.91-1.94]). There was no association with severe outcome for FVL, F2 G20210A or PRS(VTE). Outpatient anticoagulation usage in the two years prior to testing was associated with worse clinical outcomes. PRS(VTE) was associated with prevalent VTE diagnosis among both FVL carriers or F5 wild type individuals as well as incident VTE in the two years prior to testing. Increased genetic propensity for VTE in the MVP was associated with increased COVID-19 positive testing rates, suggesting a role of coagulation in the initial steps of COVID-19 infection.

6.
JAMA Intern Med ; 182(4): 386-395, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1653126

ABSTRACT

IMPORTANCE: Coronavirus disease 2019 (COVID-19) confers significant risk of acute kidney injury (AKI). Patients with COVID-19 with AKI have high mortality rates. OBJECTIVE: Individuals with African ancestry with 2 copies of apolipoprotein L1 (APOL1) variants G1 or G2 (high-risk group) have significantly increased rates of kidney disease. We tested the hypothesis that the APOL1 high-risk group is associated with a higher-risk of COVID-19-associated AKI and death. DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study included 990 participants with African ancestry enrolled in the Million Veteran Program who were hospitalized with COVID-19 between March 2020 and January 2021 with available genetic information. EXPOSURES: The primary exposure was having 2 APOL1 risk variants (RV) (APOL1 high-risk group), compared with having 1 or 0 risk variants (APOL1 low-risk group). MAIN OUTCOMES AND MEASURES: The primary outcome was AKI. The secondary outcomes were stages of AKI severity and death. Multivariable logistic regression analyses adjusted for preexisting comorbidities, medications, and inpatient AKI risk factors; 10 principal components of ancestry were performed to study these associations. We performed a subgroup analysis in individuals with normal kidney function prior to hospitalization (estimated glomerular filtration rate ≥60 mL/min/1.73 m2). RESULTS: Of the 990 participants with African ancestry, 905 (91.4%) were male with a median (IQR) age of 68 (60-73) years. Overall, 392 (39.6%) patients developed AKI, 141 (14%) developed stages 2 or 3 AKI, 28 (3%) required dialysis, and 122 (12.3%) died. One hundred twenty-five (12.6%) of the participants were in the APOL1 high-risk group. Patients categorized as APOL1 high-risk group had significantly higher odds of AKI (adjusted odds ratio [OR], 1.95; 95% CI, 1.27-3.02; P = .002), higher AKI severity stages (OR, 2.03; 95% CI, 1.37-2.99; P < .001), and death (OR, 2.15; 95% CI, 1.22-3.72; P = .007). The association with AKI persisted in the subgroup with normal kidney function (OR, 1.93; 95% CI, 1.15-3.26; P = .01). Data analysis was conducted between February 2021 and April 2021. CONCLUSIONS AND RELEVANCE: In this cohort study of veterans with African ancestry hospitalized with COVID-19 infection, APOL1 kidney risk variants were associated with higher odds of AKI, AKI severity, and death, even among individuals with prior normal kidney function.


Subject(s)
Acute Kidney Injury , COVID-19 , Veterans , Acute Kidney Injury/genetics , African Americans/genetics , Aged , Apolipoprotein L1/genetics , Cohort Studies , Female , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors
7.
Front Genet ; 12: 765247, 2021.
Article in English | MEDLINE | ID: covidwho-1599197

ABSTRACT

Risk factors and long-term consequences of COVID-19 infection are unclear but can be investigated with large-scale genomic data. To distinguish correlation from causation, we performed in-silico analyses of three COVID-19 outcomes (N > 1,000,000). We show genetic correlation and putative causality with depressive symptoms, metformin use (genetic causality proportion (gcp) with severe respiratory COVID-19 = 0.576, p = 1.07 × 10-5 and hospitalized COVID-19 = 0.713, p = 0.003), and alcohol drinking status (gcp with severe respiratory COVID-19 = 0.633, p = 7.04 × 10-5 and hospitalized COVID-19 = 0.848, p = 4.13 × 10-13). COVID-19 risk loci associated with several hematologic biomarkers. Comprehensive findings inform genetic contributions to COVID-19 epidemiology, molecular mechanisms, and risk factors and potential long-term health effects of severe response to infection.

9.
Front Genet ; 12: 698033, 2021.
Article in English | MEDLINE | ID: covidwho-1405406

ABSTRACT

Angiotensin-converting enzyme-2 (ACE2) receptor has been identified as the key adhesion molecule for the transmission of the SARS-CoV-2. However, there is no evidence that human genetic variation in ACE2 is singularly responsible for COVID-19 susceptibility. Therefore, we performed an integrative multi-level characterization of genes that interact with ACE2 (ACE2-gene network) for their statistically enriched biological properties in the context of COVID-19. The phenome-wide association of 51 genes including ACE2 with 4,756 traits categorized into 26 phenotype categories, showed enrichment of immunological, respiratory, environmental, skeletal, dermatological, and metabolic domains (p < 4e-4). Transcriptomic regulation of ACE2-gene network was enriched for tissue-specificity in kidney, small intestine, and colon (p < 4.7e-4). Leveraging the drug-gene interaction database we identified 47 drugs, including dexamethasone and spironolactone, among others. Considering genetic variants within ± 10 kb of ACE2-network genes we identified miRNAs whose binding sites may be altered as a consequence of genetic variation. The identified miRNAs revealed statistical over-representation of inflammation, aging, diabetes, and heart conditions. The genetic variant associations in RORA, SLC12A6, and SLC6A19 genes were observed in genome-wide association study (GWAS) of COVID-19 susceptibility. We also report the GWAS-identified variant in 3p21.31 locus, serves as trans-QTL for RORA and RORC genes. Overall, functional characterization of ACE2-gene network highlights several potential mechanisms in COVID-19 susceptibility. The data can also be accessed at https://gpwhiz.github.io/ACE2Netlas/.

10.
Nat Commun ; 12(1): 4569, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1328846

ABSTRACT

Despite rapid progress in characterizing the role of host genetics in SARS-Cov-2 infection, there is limited understanding of genes and pathways that contribute to COVID-19. Here, we integrate a genome-wide association study of COVID-19 hospitalization (7,885 cases and 961,804 controls from COVID-19 Host Genetics Initiative) with mRNA expression, splicing, and protein levels (n = 18,502). We identify 27 genes related to inflammation and coagulation pathways whose genetically predicted expression was associated with COVID-19 hospitalization. We functionally characterize the 27 genes using phenome- and laboratory-wide association scans in Vanderbilt Biobank (n = 85,460) and identified coagulation-related clinical symptoms, immunologic, and blood-cell-related biomarkers. We replicate these findings across trans-ethnic studies and observed consistent effects in individuals of diverse ancestral backgrounds in Vanderbilt Biobank, pan-UK Biobank, and Biobank Japan. Our study highlights and reconfirms putative causal genes impacting COVID-19 severity and symptomology through the host inflammatory response.


Subject(s)
COVID-19/metabolism , COVID-19/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Hospitalization , Humans , Polymorphism, Single Nucleotide/genetics , Risk Factors
12.
medRxiv ; 2020 Oct 28.
Article in English | MEDLINE | ID: covidwho-915979

ABSTRACT

Angiotensin-converting enzyme-2 ( ACE2 ) receptor has been identified as the key adhesion molecule for the transmission of the SARS-CoV-2. However, there is no evidence that human genetic variation in ACE2 is singularly responsible for COVID-19 susceptibility. Therefore, we performed a multi-level characterization of genes that interact with ACE2 (ACE2-gene network) for their over-represented biological properties in the context of COVID-19. The phenome-wide association of 51 genes including ACE2 with 4,756 traits categorized into 26 phenotype categories, showed enrichment of immunological, respiratory, environmental, skeletal, dermatological, and metabolic domains (p<4e-4). Transcriptomic regulation of ACE2-gene network was enriched for tissue-specificity in kidney, small intestine, and colon (p<4.7e-4). Leveraging the drug-gene interaction database we identified 47 drugs, including dexamethasone and spironolactone, among others. Considering genetic variants within ± 10 kb of ACE2-network genes we characterized functional consequences (among others) using miRNA binding-site targets. MiRNAs affected by ACE2-network variants revealed statistical over-representation of inflammation, aging, diabetes, and heart conditions. With respect to variants mapped to the ACE2-network, we observed COVID-19 related associations in RORA, SLC12A6 and SLC6A19 genes. Overall, functional characterization of ACE2-gene network highlights several potential mechanisms in COVID-19 susceptibility. The data can also be accessed at https://gpwhiz.github.io/ACE2Netlas/.

SELECTION OF CITATIONS
SEARCH DETAIL