ABSTRACT
BACKGROUND: The Omicron variant of SARS-CoV-2 is more transmissible than prior variants of concern (VOCs). It has caused the largest outbreaks in the pandemic, with increases in mortality and hospitalizations. Early data on the spread of Omicron were captured in countries with relatively low case counts, so it was unclear how the arrival of Omicron would impact the trajectory of the pandemic in countries already experiencing high levels of community transmission of Delta. OBJECTIVE: The objective of this study is to quantify and explain the impact of Omicron on pandemic trajectories and how they differ between countries that were or were not in a Delta outbreak at the time Omicron occurred. METHODS: We used SARS-CoV-2 surveillance and genetic sequence data to classify countries into 2 groups: those that were in a Delta outbreak (defined by at least 10 novel daily transmissions per 100,000 population) when Omicron was first sequenced in the country and those that were not. We used trend analysis, survival curves, and dynamic panel regression models to compare outbreaks in the 2 groups over the period from November 1, 2021, to February 11, 2022. We summarized the outbreaks in terms of their peak rate of SARS-CoV-2 infections and the duration of time the outbreaks took to reach the peak rate. RESULTS: Countries that were already in an outbreak with predominantly Delta lineages when Omicron arrived took longer to reach their peak rate and saw greater than a twofold increase (2.04) in the average apex of the Omicron outbreak compared to countries that were not yet in an outbreak. CONCLUSIONS: These results suggest that high community transmission of Delta at the time of the first detection of Omicron was not protective, but rather preluded larger outbreaks in those countries. Outbreak status may reflect a generally susceptible population, due to overlapping factors, including climate, policy, and individual behavior. In the absence of strong mitigation measures, arrival of a new, more transmissible variant in these countries is therefore more likely to lead to larger outbreaks. Alternately, countries with enhanced surveillance programs and incentives may be more likely to both exist in an outbreak status and detect more cases during an outbreak, resulting in a spurious relationship. Either way, these data argue against herd immunity mitigating future outbreaks with variants that have undergone significant antigenic shifts.
Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Disease Outbreaks , Humans , Pandemics , Public Health Surveillance/methodsABSTRACT
BACKGROUND: The COVID-19 pandemic has had profound and differential impacts on metropolitan areas across the United States and around the world. Within the United States, metropolitan areas that were hit earliest with the pandemic and reacted with scientifically based health policy were able to contain the virus by late spring. For other areas that kept businesses open, the first wave in the United States hit in mid-summer. As the weather turns colder, universities resume classes, and people tire of lockdowns, a second wave is ascending in both metropolitan and rural areas. It becomes more obvious that additional SARS-CoV-2 surveillance is needed at the local level to track recent shifts in the pandemic, rates of increase, and persistence. OBJECTIVE: The goal of this study is to provide advanced surveillance metrics for COVID-19 transmission that account for speed, acceleration, jerk and persistence, and weekly shifts, to better understand and manage risk in metropolitan areas. Existing surveillance measures coupled with our dynamic metrics of transmission will inform health policy to control the COVID-19 pandemic until, and after, an effective vaccine is developed. Here, we provide values for novel indicators to measure COVID-19 transmission at the metropolitan area level. METHODS: Using a longitudinal trend analysis study design, we extracted 260 days of COVID-19 data from public health registries. We used an empirical difference equation to measure the daily number of cases in the 25 largest US metropolitan areas as a function of the prior number of cases and weekly shift variables based on a dynamic panel data model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: Minneapolis and Chicago have the greatest average number of daily new positive results per standardized 100,000 population (which we refer to as speed). Extreme behavior in Minneapolis showed an increase in speed from 17 to 30 (67%) in 1 week. The jerk and acceleration calculated for these areas also showed extreme behavior. The dynamic panel data model shows that Minneapolis, Chicago, and Detroit have the largest persistence effects, meaning that new cases pertaining to a specific week are statistically attributable to new cases from the prior week. CONCLUSIONS: Three of the metropolitan areas with historically early and harsh winters have the highest persistence effects out of the top 25 most populous metropolitan areas in the United States at the beginning of their cold weather season. With these persistence effects, and with indoor activities becoming more popular as the weather gets colder, stringent COVID-19 regulations will be more important than ever to flatten the second wave of the pandemic. As colder weather grips more of the nation, southern metropolitan areas may also see large spikes in the number of cases.