Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Indian J Med Res ; 155(1): 136-147, 2022 01.
Article in English | MEDLINE | ID: covidwho-1954291

ABSTRACT

Background & objectives: The COVID-19 disease profile in Indian patients has been found to be different from the Western world. Changes in lymphocyte compartment have been correlated with disease course, illness severity and clinical outcome. This study was aimed to assess the peripheral lymphocyte phenotype and subset distribution in patients with COVID-19 disease from India with differential clinical manifestations. Methods: Percentages of peripheral lymphocyte subsets were measured by flow cytometry in hospitalized asymptomatic (n=53), mild symptomatic (n=36), moderate and severe (n=30) patients with SARS-CoV-2 infection, recovered individuals (n=40) and uninfected controls (n=56) from Pune, Maharashtra, India. Results: Percentages of CD4+Th cells were significantly high in asymptomatic, mild symptomatic, moderate and severe patients and recovered individuals compared to controls. Percentages of Th memory (CD3+CD4+CD45RO+), Tc memory (CD3+CD8+CD45RO+) and B memory (CD19+CD27+) cells were significantly higher in the recovered group compared to both asymptomatic, mild symptomatic patient and uninfected control groups. NK cell (CD56+CD3-) percentages were comparable among moderate +severe patient and uninfected control groups. Interpretation & conclusions: The observed lower CD4+Th cells in moderate+severe group requiring oxygen support compared to asymptomatic+mild symptomatic group not requiring oxygen support could be indicative of poor prognosis. Higher Th memory, Tc memory and B memory cells in the recovered group compared to mild symptomatic patient groups might be markers of recovery from mild infection; however, it remains to be established if the persistence of any of these cells could be considered as a correlate of protection.


Subject(s)
COVID-19 , Humans , India/epidemiology , Lymphocyte Count , Lymphocyte Subsets , Oxygen , SARS-CoV-2
2.
Emerg Infect Dis ; 28(6): 1269-1273, 2022 06.
Article in English | MEDLINE | ID: covidwho-1933531

ABSTRACT

A 11-year-old boy with acute myeloid leukemia was brought for treatment of severe acute respiratory infection in the National Capital Region, New Delhi, India. Avian influenza A(H5N1) infection was laboratory confirmed. Complete genome analysis indicated hemagglutinin gene clade 2.3.2.1a. We found the strain to be susceptible to amantadine and neuraminidase inhibitors.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Influenza, Human , Animals , Antiviral Agents/pharmacology , Birds , Child , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , India , Influenza A Virus, H5N1 Subtype/genetics , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Male , Phylogeny
3.
Indian J Med Res ; 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1924409

ABSTRACT

Background & objectives: Polio, measles, rubella, influenza and rotavirus surveillance programmes are of great public health importance globally. Virus isolation using cell culture is an integral part of such programmes. Possibility of unintended isolation of SARS-CoV-2 from clinical specimens processed in biosafety level-2 (BSL-2) laboratories during the above-mentioned surveillance programmes, cannot be ruled out. The present study was conducted to assess the susceptibility of different cell lines to SARS-CoV-2 used in these programmes. Methods: Replication of SARS-CoV-2 was studied in RD and L20B, Vero/hSLAM, MA-104 and Madin-Darby Canine Kidney (MDCK) cell lines, used for the isolation of polio, measles, rubella, rotavirus and influenza viruses, respectively. SARS-CoV-2 at 0.01 multiplicity of infection was inoculated and the viral growth was assessed by observation of cytopathic effects followed by real-time reverse transcription-polymerase chain reaction (qRT-PCR). Vero CCL-81 cell line was used as a positive control. Results: SARS-CoV-2 replicated in Vero/hSLAM, and MA-104 cells, whereas it did not replicate in L20B, RD and MDCK cells. Vero/hSLAM, and Vero CCL-81 showed rounding, degeneration and detachment of cells; MA-104 cells also showed syncytia formation. In qRT-PCR, Vero/hSLAM and MA-104 showed 106 and Vero CCL-81 showed 107 viral RNA copies per µl. The 50 per cent tissue culture infectious dose titres of Vero/hSLAM, MA-104 and Vero CCL-81 were 105.54, 105.29 and 106.45/ml, respectively. Interpretation & conclusions: Replication of SARS-CoV-2 in Vero/hSLAM and MA-104 underscores the possibility of its unintended isolation during surveillance procedures aiming to isolate measles, rubella and rotavirus. This could result in accidental exposure to high titres of SARS-CoV-2, which can result in laboratory acquired infections and community risk, highlighting the need for revisiting biosafety measures in public health laboratories.

4.
J Microbiol Immunol Infect ; 2022 Jul 02.
Article in English | MEDLINE | ID: covidwho-1914641

ABSTRACT

BACKGROUND: During October 2020, Delta variant was detected for the first time in India and rampantly spread across the globe. It also led to second wave of pandemic in India which affected millions of people. However, there is limited information pertaining to the SARS-CoV-2 strain infecting the children in India. METHODS: Here, we assessed the SARS-CoV-2 lineages circulating in the pediatric population of India during the second wave of the pandemic. Clinical and demographic details linked with the nasopharyngeal/oropharyngeal swabs (NPS/OPS) collected from SARS-CoV-2 cases (n = 583) aged 0-18 year and tested positive by real-time RT-PCR were retrieved from March to June 2021. RESULTS: Symptoms were reported among 37.2% of patients and 14.8% reported to be hospitalized. The E gene CT value had significant statistical difference at the point of sample collection when compared to that observed in the sequencing laboratory. Out of these 512 sequences 372 were VOCs, 51 were VOIs. Most common lineages observed were Delta, followed by Kappa, Alpha and B.1.36, seen in 65.82%, 9.96%, 6.83% and 4.68%, respectively in the study population. CONCLUSION: Overall, it was observed that Delta strain was the leading cause of SARS-CoV-2 infection in Indian children during the second wave of the pandemic. We emphasize on the need of continuous genomic surveillance in SARS-CoV-2 infection even amongst children.

5.
Cureus ; 14(4), 2022.
Article in English | EuropePMC | ID: covidwho-1877061

ABSTRACT

Background The Omicron variant of SARS-CoV-2 infection was seen to be more infectious but less severe in children than adults with reduced hospitalization rates. There is a paucity of data on hospitalized children with confirmed Omicron variant. Objective We describe demographic, epidemiologic, clinical, radiological, laboratory features and outcomes of children with confirmed Omicron variant of SARS-CoV-2 infection admitted to a tertiary care teaching hospital in Pune, India. Methodology Children who tested positive for SARS-CoV-2 - Omicron variant and were admitted between 1st December 2021 and 28th February 2022 were included in the study. Results Out of a total of 37 Covid-positive children admitted during the study period, 16 underwent genome sequencing of which 14 were confirmed to be Omicron variant and two were Delta variant. The age range was one month to 12 years and seven (50%) were male. Common presenting features were fever (n=13, 93%), cough (n=7, 50%), seizures (n=7, 50%) and coryza (n=5, 36%). Comorbidities noted were epilepsy (n=3, 21%) and one each with Thalassemia Major, suspected inborn error of metabolism (IEM), operated anorectal malformation with hypospadias, chronic suppurative otitis media with complications (mastoiditis and facial nerve palsy), neonatal cholestasis and intracranial bleed with dural venous sinus thrombosis. Malnutrition was noted in 42%, pallor in 10 cases (71%). Severe anaemia (n=10, 71%), elevated ferritin (n=6, 43%), positive C-Reactive Protein (n=4, 28%) and deranged D-dimer (n=11, 78%) were noted. The Neutrophil to Lymphocyte ratio (NLR) was >3.3 in five (36%) children. Four (28%) had evidence of pneumonia on the chest radiograph. Oxygen therapy was needed in nine (64%) while two children (14%) required mechanical ventilation. There were two deaths (14%) in children with multiorgan dysfunction and refractory shock. Intravenous immunoglobulin and methylprednisolone were administered to one patient respectively (14%). The median hospital stay was 10 days (Interquartile range = 8). Conclusion Hospitalized children with Omicron variant of SARS-CoV-2 who have underlying comorbidities may have severe presentations needing ICU care. Mortality rates are low with appropriate ICU care.

6.
Med J Armed Forces India ; 78(3): 264-270, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1851801

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a bat-derived betacoronavirus, that emerged around December 2019. In spite of the lesser genomic diversity of CoVs in general, a steady accumulation of mutations spread over its genome have been noted, resulting in the emergence of several clades and lineages. Majority of these mutations are random and non-functional changes; however a few variants of concern (VOC) and variants of interest (VOI) designated by the WHO since late 2020 have implications to diagnostics, pathogenicity and immune escape. This review discusses the various nomenclatures depicting the SARS-CoV-2 evolution, the designated VOCs and VOIs and the mutations characterizing these variants. The evolution of SARS-CoV-2 in India and the implications to vaccine efficacy and breakthrough infections is also addressed.

7.
BMC Infect Dis ; 22(1): 463, 2022 May 14.
Article in English | MEDLINE | ID: covidwho-1846802

ABSTRACT

BACKGROUND: Acute respiratory infections (ARIs) and severe acute respiratory illness (SARI) are public health burdens globally. The percentage of non-SARS CoV-2 respiratory viruses among patients having ARI and SARI who visit Car Nicobar's hospital settings is undocumented. Changes in the epidemiology of other respiratory viruses during COVID19 pandemic is being reported worldwide. METHODS: Inpatient and outpatient settings at BJR hospital, Car Nicobar Island, India, were used to conduct prospective monitoring for ARI and SARI among Nicobarese tribal members. The patients with ARI and SARI were enlisted in BJR hospital from June 2019 to May 2021. At the ICMR-NIV in Pune, duplex RT-PCR assays were used to test the presence of respiratory viruses. The prevalence of non- SARS CoV-2 respiratory viruses was measured by comparing here between pandemic and pre-pandemic periods. RESULTS: During the COVID19 pandemic, Influenza A (H3N2) and rhinovirus were predominantly reported non-SARS CoV-2 respiratory viruses while Human metapneumovirusand influenza A (H1N1)pdm09were most commonly reported in the prepandemic period. This result indicates the altered circulation of non-SARS CoV-2 during pandemic. CONCLUSIONS: A considerable proportion of respiratory infection was correlated with respiratory viruses. Prevalence of non-SARS CoV-2 respiratory viruses was high at the time of infection when compared with pre-pandemic period, at Car Nicobar Island. This study enlightened the change in circulation of other respiratory viruses among the indigenous Nicobarese tribes. Clinicians and allied medical staff should be more prudent of these respiratory infections.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Respiratory Tract Infections , COVID-19/epidemiology , Humans , India/epidemiology , Influenza A Virus, H3N2 Subtype , Influenza, Human/epidemiology , Pandemics , Prospective Studies , Respiratory Tract Infections/epidemiology , SARS-CoV-2
10.
Front Med (Lausanne) ; 9: 835168, 2022.
Article in English | MEDLINE | ID: covidwho-1775700

ABSTRACT

The main route of the transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are through respiratory pathways and close contact of human-to-human. While information about other modes of transmission is comparatively less, some published literature supporting the likelihood of a fecal-oral mode of transmission has been accumulating. The diagnosis of SARS-COV-2 infected cases is based on the real-time reverse transcription-PCR (RT-PCR). The fecal excretion of SARS-COV-2 has been reported frequently, however, the role of fecal viral load with the severity of disease is not yet clear. Our study focused on the investigation of SARS-CoV-2 shedding in the fecal samples of patients with coronavirus disease 2019 (COVID-19). A total of 280 RT-PCR-positive patients were enrolled, among them 15.4% had gastrointestinal (GI) symptoms. It was shown that 62% of the patients were positive for SARS-CoV-2 RNA in fecal specimens. This positivity was not related to the presence of GI symptoms and the severity of disease. The next generation sequencing [NGS] of SARS-CoV-2 from fecal samples of patients was performed to analyze mutational variations. Findings from this study not only emphasized the potential presence of SARS-CoV-2 in feces, but also its continuing mutational changes and its possible role in fecal-oral transmission.

11.
Viruses ; 14(3)2022 03 17.
Article in English | MEDLINE | ID: covidwho-1753690

ABSTRACT

SARS-CoV-2/influenza virus co-infection studies have focused on hospitalized patients who usually had grave sequelae. Here, we report SARS-CoV-2/influenza virus co-infection cases from both community and hospital settings reported through integrated ILI/SARI (Influenza Like Illness/Severe Acute Respiratory Infection) sentinel surveillance established by the Indian Council of Medical Research. We describe the disease progression and outcomes in these cases. Out of 13,467 samples tested from 4 July 2021-31 January 2022, only 5 (0.04%) were of SARS-CoV-2/influenza virus co-infection from 3 different sites in distinct geographic regions. Of these, three patients with extremes of age required hospital admission, but none required ICU admission or mechanical ventilation. No mortality was reported. The other two co-infection cases from community settings were managed at home. This is the first report on SARS-CoV-2/Influenza virus co-infection from community as well as hospital settings in India and shows that influenza viruses are circulating in the community even during COVID-19. The results emphasize the need for continuous surveillance for multiple respiratory pathogens for effective public health management of ILI/SARI cases in line with the WHO (World Health Organization) recommendations.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Orthomyxoviridae , COVID-19/epidemiology , Coinfection/epidemiology , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , SARS-CoV-2 , Seasons , Sentinel Surveillance
12.
Viruses ; 14(3)2022 02 24.
Article in English | MEDLINE | ID: covidwho-1737033

ABSTRACT

Due to the failure of virus isolation of the Omicron variant in Vero CCL-81 from the clinical specimens of COVID-19 cases, an initial in vivo and subsequent in vitro approach was utilized for the isolation of the virus. A total of 74 oropharyngeal/nasopharyngeal specimens were collected from SARS-CoV-2 positive international travellers and a contact case at Delhi and Mumbai, India. All the specimens were sequenced using next-generation sequencing and simultaneously inoculated onto Vero CCL-81 cells for virus isolation. Subsequently, two omicron positive specimens were inoculated into Syrian hamsters for two passages. The initial passage of the positive hamster specimens was inoculated onto Vero CCL-81 cells. The clinical specimens, hamster specimens, and Vero CCL-81 passages were sequenced to assess the mutational changes in different host species. The replication of the Omicron variant in hamsters was confirmed with the presence of a high viral load in nasal turbinate and lung specimens of both passages. The successful isolation of the virus from hamster specimens with Vero CCL-81 was observed with cytopathic effect in infected cells and high viral load in the cell suspension. The genome analysis revealed the presence of L212C mutation, Tyrosine 69 deletion, and C25000T nucleotide change in spike gene of hamster passage sequences and an absence of V17I mutation in E gene in hamster passage sequences, unlike human clinical specimen and Vero CCL-81 passages. No change was observed in the furin cleavage site in any of the specimen sequences, suggesting intact pathogenicity of the virus isolate. Our data demonstrated successful isolation of the Omicron variant with the in vivo method first followed by in vitro method. The virus isolate could be used in the future to explore different aspects of the Omicron variant.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Cricetinae , Genomics , Humans , SARS-CoV-2/genetics , Vero Cells
13.
Indian J Med Res ; 151(2 & 3): 200-209, 2020.
Article in English | MEDLINE | ID: covidwho-1726321

ABSTRACT

Background & objectives: Since December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally affected 195 countries. In India, suspected cases were screened for SARS-CoV-2 as per the advisory of the Ministry of Health and Family Welfare. The objective of this study was to characterize SARS-CoV-2 sequences from three identified positive cases as on February 29, 2020. Methods: Throat swab/nasal swab specimens for a total of 881 suspected cases were screened by E gene and confirmed by RdRp (1), RdRp (2) and N gene real-time reverse transcription-polymerase chain reactions and next-generation sequencing. Phylogenetic analysis, molecular characterization and prediction of B- and T-cell epitopes for Indian SARS-CoV-2 sequences were undertaken. Results: Three cases with a travel history from Wuhan, China, were confirmed positive for SARS-CoV-2. Almost complete (29,851 nucleotides) genomes of case 1, case 3 and a fragmented genome for case 2 were obtained. The sequences of Indian SARS-CoV-2 though not identical showed high (~99.98%) identity with Wuhan seafood market pneumonia virus (accession number: NC 045512). Phylogenetic analysis showed that the Indian sequences belonged to different clusters. Predicted linear B-cell epitopes were found to be concentrated in the S1 domain of spike protein, and a conformational epitope was identified in the receptor-binding domain. The predicted T-cell epitopes showed broad human leucocyte antigen allele coverage of A and B supertypes predominant in the Indian population. Interpretation & conclusions: The two SARS-CoV-2 sequences obtained from India represent two different introductions into the country. The genetic heterogeneity is as noted globally. The identified B- and T-cell epitopes may be considered suitable for future experiments towards the design of vaccines and diagnostics. Continuous monitoring and analysis of the sequences of new cases from India and the other affected countries would be vital to understand the genetic evolution and rates of substitution of the SARS-CoV-2.


Subject(s)
Betacoronavirus/genetics , Genome, Viral , COVID-19 , Coronavirus Infections , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/genetics , Humans , India , Models, Molecular , Pandemics , Phylogeny , Pneumonia, Viral , Protein Structure, Tertiary , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
14.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-325672

ABSTRACT

Background: Omicron a new variant of SARS COV2 was first detected in November 2021. This was believed to be highly transmissible and evade immunity as a result urgent need was felt to screen all positive, identify Omicron cases and isolate them to prevent spread of infection and study their clinico-epidemiological profile. Methodology: All positive cases detected in state of Rajasthan during November to January beginning were selected for next generation sequencing. Processing was done as per protocol on Ion Torrent S5 system for 1210 samples and bioinformatics analysis was done. Results: Among the 1210 samples tested 762(62.9%) were Delta/Delta like and other lineages, 291(24%) were Omicron and 157(12.9%) were invalid or repeat samples. Within a month the proportion of Delta and other variants was reversed, from zero omicron became 81% and delta and other variants 19%, initially all omicron cases were international travellers and their contacts but soon community transmission was seen. Majority of omicron patients were asymptomatic (56.7%) or had mild disease (33%), 9.2% had moderate symptoms and 2(0.7%) had severe disease requiring hospitalization, of which one (0.3%) died and rest (99.7%) recovered. History of vaccination was seen in 81.1%, of previous infection in 43.2%. Among the Omicron cases BA.1 (62.8%) was the predominant lineage followed by BA.2(23.7%) and B.1.529 (13.4%), however rising trends were seen initially for BA.1 and later for BA.2 also. Conclusion: In very short time Omicron has spread in community and has taken over the pre-existing Delta/Delta like and other lineages, it evades immunity, but the good part is most of the cases were asymptomatic or had mild disease and mortality rate was very low. Key words;SARSCoV2, NGS, Omicron

15.
PLoS One ; 17(2): e0263736, 2022.
Article in English | MEDLINE | ID: covidwho-1674020

ABSTRACT

Sudden emergence and rapid spread of COVID-19 created an inevitable need for expansion of the COVID-19 laboratory testing network across the world. The strategy to test-track-treat was advocated for quick detection and containment of the disease. Being the second most populous country in the world, India was challenged to make COVID-19 testing available and accessible in all parts of the country. The molecular laboratory testing network was augmented expeditiously, and number of laboratories was increased from one in January 2020 to 2951 till mid-September, 2021. This rapid expansion warranted the need to have inbuilt systems of quality control/ quality assurance. In addition to the ongoing inter-laboratory quality control (ILQC), India implemented an External Quality Assurance Program (EQAP) with assistance from World Health Organization (WHO) and Royal College of Pathologists, Australasia. Out of the 953 open system rRTPCR laboratories in both public and private sector who participated in the first round of EQAP, 891(93.4%) laboratories obtained a passing score of > = 80%. The satisfactory performance of Indian COVID-19 testing laboratories has boosted the confidence of the public and policy makers in the quality of testing. ILQC and EQAP need to continue to ensure adherence of the testing laboratories to the desired quality standards.


Subject(s)
COVID-19 Testing/standards , COVID-19/diagnosis , Clinical Laboratory Techniques/standards , Laboratories/standards , Mass Screening/standards , Quality Assurance, Health Care/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , COVID-19/epidemiology , COVID-19/genetics , COVID-19/virology , Humans , India/epidemiology , Quality Control , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Specimen Handling/methods
16.
Int J Infect Dis ; 112: 103-110, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1654539

ABSTRACT

OBJECTIVES: Monitoring the antibody responses to SARS-CoV-2 infection and its correlation to clinical spectrum of disease is critical in understanding the disease progression and protection against re-infection. We assessed the nucleocapsid (N) and receptor-binding-domain of spike (SRBD) protein specific IgG and neutralizing antibody (NAb) responses in COVID-19 patients up to 8 months and its correlation with diverse disease spectrum. METHODS: During the first wave of the SARS-CoV-2 pandemic, from 284 COVID-19 patients, 608 samples were collected up to 8 months post infection. The patients were categorized as asymptomatic, symptomatic and severe. The N and SRBD IgG and NAb titers were evaluated and correlated with clinical data. RESULTS: A steep increase in antigen specific antibody titers was observed till 40 days post onset of the disease (POD), followed by a partial decline till 240 days. Severe disease was associated with a stronger SRBD IgG response and higher NAb titers. The persistence of antibody response was observed in 76% against N, 80% against SRBD and 80% for NAbs of cases up to 8 months POD. CONCLUSION: RBD and N protein specific IgG persisted till 240 days POD which correlated with NAb response, irrespective of individual`s symptomatic status indicating overall robust protection against re-infection.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing , Antibodies, Viral , Humans , Nucleocapsid , SARS-CoV-2
18.
J Infect Public Health ; 15(2): 164-171, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1587224

ABSTRACT

BACKGROUND: Considering the potential threat from emerging Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) variants and the rising COVID-19 cases, SARS-CoV-2 genomic surveillance is ongoing in India. We report herewith the isolation of the P.2 variant (B.1.1.28.2) from international travelers and further its pathogenicity evaluation and comparison with D614G variant (B.1) in hamster model. METHODS: Virus isolation was performed in Vero CCL81 cells and genomic characterization by next generation sequencing. The pathogenicity and host immune response of the isolate was assessed in Syrian hamster model and compared with B.1 variant. RESULTS: B.1.1.28.2 variant was isolated from nasal/throat swabs of international travelers returned to India from United Kingdom and Brazil. The B.1.1.28.2 variant induced body weight loss, viral replication in the respiratory tract and caused severe lung pathology in infected Syrian hamster model in comparison, with B.1 variant infected hamsters. The sera from B.1.1.28.2 infected hamsters efficiently neutralized the D614G variant virus whereas 6-fold reduction in the neutralization was seen in case of D614G variant infected hamsters' sera with the B.1.1.28.2 variant. CONCLUSIONS: B.1.1.28.2 lineage variant could be successfully isolated and characterization could be performed. Pathogenicity of the isolate was demonstrated in Syrian hamster model and the findings of neutralization reduction is of great concern and point towards the need for screening the vaccines for efficacy.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Disease Models, Animal , Humans , Lung , Virulence
19.
J Infect Public Health ; 15(2): 182-186, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1587222

ABSTRACT

BACKGROUND: The emergence of SARS-CoV-2 variants in places where the virus is uncontained poses a global threat from the perspective of public health and vaccine efficacy. Travel has been important factor for the easy spread of SARS-CoV-2 variants worldwide. India has also observed the importation of SARS-CoV-2 variants through international travelers. METHODS: In this study, we have collected the oropharyngeal and nasopharyngeal swab specimens from 58 individuals with travel history from United Arab Emirates (UAE), East, West and South Africa, Qatar, Ukraine and Saudi Arabia arrived in India during February-March 2021. The clinical specimens were initially screened for SARS-CoV-2 using Real time RT-PCR. All the specimens were inoculated on to Vero CCL-81 cells for virus isolation. The viral isolates were further sequenced using Next-Generation Sequencing. RESULTS: All 58 cases were tested positive for SARS-CoV-2 using Real time RT-PCR. Four specimens showed progressive infectivity with fusion of the infected cells with neighboring cells leading to large mass of cells. Replication competent virus was confirmed from culture supernatant of the passage 2 using Real time RT-PCR. Two plaque purified SARS-CoV-2 isolates demonstrated high viral RNA load of 3.8-7.5 × 1011 and 1.1-1.6 × 1011 at passage 4 and 5 respectively. Nucleotide variations along with amino acid changes were also observed among these two isolates at passage 2-5. All four cases were male with no symptoms and co-morbidity. The sequence analysis has shown two different clusters, first cluster with nucleotide deletions in the ORF1ab and the spike, while second cluster with deletions in spike region. The viral isolates demonstrated 99.88-99.96% nucleotide identity with the representative sequences of Beta variant (B.1.351). CONCLUSION: These findings suggest easier transmission of SARS-CoV-2 variants with human mobility through international travel. The isolated Beta variant would be useful to determine the protective efficacy of the currently available and upcoming COVID-19 vaccines in India.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Humans , Male , United Arab Emirates
20.
Lancet ; 398(10317): 2173-2184, 2021 12 11.
Article in English | MEDLINE | ID: covidwho-1586227

ABSTRACT

BACKGROUND: We report the clinical efficacy against COVID-19 infection of BBV152, a whole virion inactivated SARS-CoV-2 vaccine formulated with a toll-like receptor 7/8 agonist molecule adsorbed to alum (Algel-IMDG) in Indian adults. METHODS: We did a randomised, double-blind, placebo-controlled, multicentre, phase 3 clinical trial in 25 Indian hospitals or medical clinics to evaluate the efficacy, safety, and immunological lot consistency of BBV152. Adults (age ≥18 years) who were healthy or had stable chronic medical conditions (not an immunocompromising condition or requiring treatment with immunosuppressive therapy) were randomised 1:1 with a computer-generated randomisation scheme (stratified for the presence or absence of chronic conditions) to receive two intramuscular doses of vaccine or placebo administered 4 weeks apart. Participants, investigators, study coordinators, study-related personnel, the sponsor, and nurses who administered the vaccines were masked to treatment group allocation; an unmasked contract research organisation and a masked expert adjudication panel assessed outcomes. The primary outcome was the efficacy of the BBV152 vaccine in preventing a first occurrence of laboratory-confirmed (RT-PCR-positive) symptomatic COVID-19 (any severity), occurring at least 14 days after the second dose in the per-protocol population. We also assessed safety and reactogenicity throughout the duration of the study in all participants who had received at least one dose of vaccine or placebo. This report contains interim results (data cutoff May 17, 2021) regarding immunogenicity and safety outcomes (captured on days 0 to 56) and efficacy results with a median of 99 days for the study population. The trial was registered on the Indian Clinical Trials Registry India, CTRI/2020/11/028976, and ClinicalTrials.gov, NCT04641481 (active, not recruiting). FINDINGS: Between Nov 16, 2020, and Jan 7, 2021, we recruited 25 798 participants who were randomly assigned to receive BBV152 or placebo; 24 419 received two doses of BBV152 (n=12 221) or placebo (n=12 198). Efficacy analysis was dependent on having 130 cases of symptomatic COVID-19, which occurred when 16 973 initially seronegative participants had at least 14 days follow-up after the second dose. 24 (0·3%) cases occurred among 8471 vaccine recipients and 106 (1·2%) among 8502 placebo recipients, giving an overall estimated vaccine efficacy of 77·8% (95% CI 65·2-86·4). In the safety population (n=25 753), 5959 adverse events occurred in 3194 participants. BBV152 was well tolerated; the same proportion of participants reported adverse events in the vaccine group (1597 [12·4%] of 12 879) and placebo group (1597 [12·4%] of 12 874), with no clinically significant differences in the distributions of solicited, unsolicited, or serious adverse events between the groups, and no cases of anaphylaxis or vaccine-related deaths. INTERPRETATION: BBV152 was highly efficacious against laboratory-confirmed symptomatic COVID-19 disease in adults. Vaccination was well tolerated with no safety concerns raised in this interim analysis. FUNDING: Bharat Biotech International and Indian Council of Medical Research.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Vaccines, Inactivated/immunology , Adjuvants, Immunologic , Adult , COVID-19 Nucleic Acid Testing , Double-Blind Method , Female , Humans , India , Male
SELECTION OF CITATIONS
SEARCH DETAIL