Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Pediatr Infect Dis J ; 41(12): 989-993, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2029120

ABSTRACT

BACKGROUND: SARS-CoV-2 variations as well as immune protection after previous infections and/or vaccination may have altered the incidence of multisystemic inflammatory syndrome in children (MIS-C). We aimed to report an international time-series analysis of the incidence of MIS-C to determine if there was a shift in the regions or countries included into the study. METHODS: This is a multicenter, international, cross-sectional study. We collected the MIS-C incidence from the participant regions and countries for the period July 2020 to November 2021. We assessed the ratio between MIS-C cases and COVID-19 pediatric cases in children <18 years diagnosed 4 weeks earlier (average time for the temporal association observed in this disease) for the study period. We performed a binomial regression analysis for 8 participating sites [Bogotá (Colombia), Chile, Costa Rica, Lazio (Italy), Mexico DF, Panama, The Netherlands and Catalonia (Spain)]. RESULTS: We included 904 cases of MIS-C, among a reference population of 17,906,432 children. We estimated a global significant decrease trend ratio in MIS-C cases/COVID-19 diagnosed cases in the previous month ( P < 0.001). When analyzing separately each of the sites, Chile and The Netherlands maintained a significant decrease trend ( P < 0.001), but this ratio was not statistically significant for the rest of sites. CONCLUSIONS: To our knowledge, this is the first international study describing a global reduction in the trend of the MIS-C incidence during the pandemic. COVID-19 vaccination and other factors possibly linked to the virus itself and/or community transmission may have played a role in preventing new MIS-C cases.


Subject(s)
COVID-19 , Pandemics , Humans , Child , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Cross-Sectional Studies , Incidence , COVID-19 Vaccines , Systemic Inflammatory Response Syndrome/epidemiology
2.
Front Public Health ; 10: 961030, 2022.
Article in English | MEDLINE | ID: covidwho-2022985

ABSTRACT

Purpose: We aim to compare the severity of infections between omicron and delta variants in 609,352 SARS-CoV-2 positive cases using local hospitalization, vaccination, and variants data from the Catalan Health Care System (which covers around 7. 8 million people). Methods: We performed a substitution model to establish the increase in transmissibility of omicron using variant screening data from primary care practices (PCP) and hospital admissions. In addition, we used this data from PCP to establish the two periods when delta and omicron were, respectively, dominant (above 95% of cases). After that, we performed a population-based cohort analysis to calculate the rates of hospital and intensive care unit (ICU) admissions for both periods and to estimate reduction in severity. Rate ratios (RR) and 95% confidence intervals (95% CI) were calculated and stratified by age and vaccination status. In a second analysis, the differential substitution model in primary care vs. hospitals allowed us to obtain a population-level average change in severity. Results: We have included 48,874 cases during the delta period and 560,658 during the omicron period. During the delta period, on average, 3.8% of the detected cases required hospitalization for COVID-19. This percentage dropped to 0.9% with omicron [RR of 0.46 (95% CI: 0.43 to 0.49)]. For ICU admissions, it dropped from 0.8 to 0.1% [RR 0.25 (95% CI: 0.21 to 0.28)]. The proportion of cases hospitalized or admitted to ICU was lower in the vaccinated groups, independently of the variant. Omicron was associated with a reduction in risk of admission to hospital and ICU in all age and vaccination status strata. The differential substitution models showed an average RR between 0.19 and 0.50. Conclusion: Both independent methods consistently show an important decrease in severity for omicron relative to delta. The systematic reduction happens regardless of age. The severity is also reduced for non-vaccinated and vaccinated groups, but it remains always higher in the non-vaccinated population. This suggests an overall reduction in severity, which could be intrinsic to the omicron variant. The fact is that the RR in ICU admission is systematically smaller than in hospitalization points in the same direction.


Subject(s)
COVID-19 , SARS-CoV-2 , Cohort Studies , Critical Care , Hospitalization , Humans , Spain
3.
Sci Rep ; 12(1): 15073, 2022 09 05.
Article in English | MEDLINE | ID: covidwho-2008306

ABSTRACT

While wastewater-based epidemiology has proven a useful tool for epidemiological surveillance during the COVID-19 pandemic, few quantitative models comparing virus concentrations in wastewater samples and cumulative incidence have been established. In this work, a simple mathematical model relating virus concentration and cumulative incidence for full contagion waves was developed. The model was then used for short-term forecasting and compared to a local linear model. Both scenarios were tested using a dataset composed of samples from 32 wastewater treatment plants and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) incidence data covering the corresponding geographical areas during a 7-month period, including two contagion waves. A population-averaged dataset was also developed to model and predict the incidence over the full geography. Overall, the mathematical model based on wastewater data showed a good correlation with cumulative cases and allowed us to anticipate SARS-CoV-2 incidence in one week, which is of special relevance in situations where the epidemiological monitoring system cannot be fully implemented.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Incidence , Pandemics , RNA, Viral , Spain/epidemiology , Waste Water , Wastewater-Based Epidemiological Monitoring
4.
Arch Dis Child ; 2022 Aug 23.
Article in English | MEDLINE | ID: covidwho-2001799

ABSTRACT

OBJECTIVE: To assess the effectiveness of mandatory use of face covering masks (FCMs) in schools during the first term of the 2021-2022 academic year. DESIGN: A retrospective population-based study. SETTING: Schools in Catalonia (Spain). POPULATION: 599 314 children aged 3-11 years attending preschool (3-5 years, without FCM mandate) and primary education (6-11 years, with FCM mandate). STUDY PERIOD: From 13 September to 22 December 2021 (before Omicron variant). INTERVENTIONS: A quasi-experimental comparison between children in the last grade of preschool (5 years old), as a control group, and children in year 1 of primary education (6 years old), as an interventional group. MAIN OUTCOME MEASURES: Incidence of SARS-CoV-2, secondary attack rates (SARs) and effective reproductive number (R*). RESULTS: SARS-CoV-2 incidence was significantly lower in preschool than in primary education, and an increasing trend with age was observed. Six-year-old children showed higher incidence than 5 year olds (3.54% vs 3.1%; OR 1.15 (95% CI 1.08 to 1.22)) and slightly lower but not statistically significant SAR (4.36% vs 4.59%; incidence risk ratio 0.96 (95% CI 0.82 to 1.11)) and R* (0.9 vs 0.93; OR 0.96 (95% CI 0.87 to 1.09)). Results remained consistent using a regression discontinuity design and linear regression extrapolation approaches. CONCLUSIONS: We found no significant differences in SARS-CoV-2 transmission due to FCM mandates in Catalonian schools. Instead, age was the most important factor in explaining the transmission risk for children attending school.

5.
Pediatr Infect Dis J ; 40(11): 955-961, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1758891

ABSTRACT

BACKGROUND: We analyzed contagions of coronavirus disease 2019 inside school bubble groups in Catalonia, Spain, in the presence of strong nonpharmaceutical interventions from September to December 2020. More than 1 million students were organized in bubble groups and monitored and analyzed by the Health and the Educational departments. METHODS: We had access to 2 data sources, and both were employed for the analysis, one is the Catalan school surveillance system and the other of the educational department. As soon as a positive index case is detected by the health system, isolation is required for all members of the bubble group, in addition to a mandatory proactive systematic screening of each individual. All infected cases are reported. It permits the calculation of the average reproductive number (R*), corresponding to the average number of infected individuals per index case. RESULTS: We found that propagation inside of the bubble group was small. Among 75% index cases, there was no transmission to other members in the classroom, with an average R* across all ages inside the bubble of R* = 0.4. We found a significant age trend in the secondary attack rates, with the R* going from 0.2 in preschool to 0.6 in high school youth. CONCLUSIONS: The secondary attack rate depends on the school level and therefore on the age. Super-spreading events (outbreaks of 5 cases or more) in childhood were rare, only occurring in 2.5% of all infections triggered from a pediatric index case.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2 , Schools , Students , Adolescent , Age Factors , Algorithms , Child , Child, Preschool , Disease Outbreaks , Female , Humans , Male , Models, Statistical , Population Surveillance , Spain/epidemiology
6.
Clin Infect Dis ; 74(4): 747-749, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1758693
7.
SSRN; 2022.
Preprint in English | SSRN | ID: ppcovidwho-329997

ABSTRACT

Background: Mandatory use of face covering masks (FCM) had been established for children aged six and above in Catalonia (Spain), as one of the non-pharmaceutical interventions aimed at mitigating SARS-CoV-2 transmission within schools. To date, the effectiveness of this mandate has not been well established. The quasi-experimental comparison between 5 year-old children, as a control group, and 6 year-old children, as an interventional group, provides us with the appropriate research conditions for addressing this issue. Methods: We performed a retrospective population-based study among 599,314 children aged 3 to 11 years attending preschool (3-5 years, without FCM mandate) and primary education (6-11 years, with FCM mandate) with the aim of calculating the incidence of SARS-CoV-2, secondary attack rates (SAR) and the effective reproductive number (R*) for each grade during the first trimester of the 2021-2022 academic year, and analysing the differences between 5-year-old, without FCM, and 6 year-old children, with FCM. Findings: SARS-CoV-2 incidence was significantly lower in preschool than in primary education, and an age-dependent trend was observed. Children aged 3 and 4 showed lower outcomes for all the analysed epidemiological variables, while children aged 11 had the higher values. Six-year-old children showed higher incidence than 5 year-olds (3·54% vs 3·1%;OR: 1·15 [95%CI: 1·08-1·22]) and slightly lower but not statistically significant SAR and R*: SAR were 4·36% in 6 year-old children, and 4·59% in 5 year-old (IRR: 0·96 [95%CI: 0·82-1·11]);and R* was 0·9 and 0·93 (OR: 0·96 [95%CI: 0·87-1·09]), respectively. Interpretation: FCM mandates in schools were not associated with lower SARS-CoV-2 incidence or transmission, suggesting that this intervention was not effective. Instead, age-dependency was the most important factor in explaining the transmission risk for children attending school. Funding Information: CP and SA received funding from Ministerio de Ciencia, Innovación y Universidades and FEDER, with the project PGC2018-095456-B-I00. Declaration of Interests: The authors declare that they have no conflict of interests. Ethics Approval Statement: The study was evaluated and approved by the Clinical Research Ethics Committee of the IDIAP Jordi Gol, Reference 21/018-PCV. This research was based on the agreement established in Regulation 2016/679 of the European Parliament and the Council of Europe of 27 April 2016 on Data Protection, and Organic Law 3/2018 of December 5 on the protection of personal data and the guarantee of digital rights.

8.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329301

ABSTRACT

Summary Background Mandatory COVID-19 certification was introduced at different times in the four countries of the UK. We aimed to study the effect of this intervention on the incidence of cases and hospital admissions. Methods The main outcome was the weekly averaged incidence of COVID-19 confirmed cases and hospital admissions. We performed Negative Binomial Segmented Regression (NBSR) and Autoregressive Integrated Moving Average (ARIMA) analyses for the four countries (England, Northern Ireland, Scotland and Wales), and fitted Difference-in-Differences (DiD) models to compare the latter three to England, where COVID-19 certification was imposed the latest. Findings NBSR methods suggested COVID-19 certification led to a decrease in the incidence of cases in Northern Ireland, but not in hospitalizations. In Wales, they also caused a decrease in the incidence of cases but not in hospital admissions. In Scotland, we observed a decrease in both cases and admissions. ARIMA models confirmed these results. The DiD model showed that the intervention decreased the incidence of COVID compared to England in all countries except Wales, in October. Then, the incidence rate of cases already had a decreasing tendency, as well as in England, hence a particular impact of Covid Passport was less obvious. In Wales, the model coefficients were 2.2 (95% CI -6.24,10.70) for cases and -0.144 (95% CI -0.248, -0.039) for admissions in October and -7.75 (95% CI -13.1, -2.46) for cases and -0.169 (95% CI-0.308, -0.031) for admissions in November. In Northern Ireland, -10.1 (95% CI -18.4, -1.79) for cases and -0.269 (95% CI -0.385, -0.153) for admissions. In Scotland they were 7.91 (95% CI 4.46,11.4) for cases and -0.097 (95% CI - 0.219,0.024) for admissions. Interpretation The introduction of mandatory certificates decreased cases in all countries except in England. Differences on concomitant measures, on vaccination uptake or Omicron variant prevalence could explain this discrepancy.

9.
PLoS One ; 17(2): e0263741, 2022.
Article in English | MEDLINE | ID: covidwho-1690714

ABSTRACT

BACKGROUND: Despite their clear lesser vulnerability to COVID-19, the extent by which children are susceptible to getting infected by SARS-CoV-2 and their capacity to transmit the infection to other people remains inadequately characterized. We aimed to evaluate the role of school reopening and the preventive strategies in place at schools in terms of overall risk for children and community transmission, by comparing transmission rates in children as detected by a COVID-19 surveillance platform in place in Catalonian Schools to the incidence at the community level. METHODS AND FINDINGS: Infections detected in Catalan schools during the entire first trimester of classes (September-December 2020) were analysed and compared with the ongoing community transmission and with the modelled predicted number of infections. There were 30.486 infections (2.12%) documented among the circa 1.5M pupils, with cases detected in 54.0% and 97.5% of the primary and secondary centres, respectively. During the entire first term, the proportion of "bubble groups" (stable groups of children doing activities together) that were forced to undergo confinement ranged between 1 and 5%, with scarce evidence of substantial intraschool transmission in the form of chains of infections, and with ~75% of all detected infections not leading to secondary cases. Mathematical models were also used to evaluate the effect of different parameters related to the defined preventive strategies (size of the bubble group, number of days of confinement required by contacts of an index case). The effective reproduction number inside the bubble groups in schools (R*), defined as the average number of schoolmates infected by each primary case within the bubble, was calculated, yielding a value of 0.35 for primary schools and 0.55 for secondary schools, and compared with the outcomes of the mathematical model, implying decreased transmissibility for children in the context of the applied measures. Relative homogenized monthly cumulative incidence ([Formula: see text]) was assessed to compare the epidemiological dynamics among different age groups and this analysis suggested the limited impact of infections in school-aged children in the context of the overall community incidence. CONCLUSIONS: During the fall of 2020, SARS-CoV-2 infections and COVID-19 cases detected in Catalan schools closely mirrored the underlying community transmission from the neighbourhoods where they were set and maintaining schools open appeared to be safe irrespective of underlying community transmission. Preventive measures in place in those schools appeared to be working for the early detection and rapid containment of transmission and should be maintained for the adequate and safe functioning of normal academic and face-to-face school activities.


Subject(s)
COVID-19 , Residence Characteristics , Schools , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Humans , Incidence , Models, Theoretical , Spain/epidemiology
10.
Clin Infect Dis ; 74(1): 66-73, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1633721

ABSTRACT

BACKGROUND: Understanding the role of children in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is critical to guide decision-making for schools in the pandemic. We aimed to describe the transmission of SARS-CoV-2 among children and adult staff in summer schools. METHODS: During July 2020, we prospectively recruited children and adult staff attending summer schools in Barcelona who had SARS-CoV-2 infection. Primary SARS-CoV-2 infections were identified through (1) a surveillance program in 22 summer schools of 1905 participants, involving weekly saliva sampling for SARS-CoV-2 reverse-transcription polymerase chain reaction (RT-PCR) during 2-5 weeks; and (2) cases identified through the Catalonian Health Surveillance System of children diagnosed with SARS-CoV-2 infection by nasopharyngeal RT-PCR. All centers followed prevention protocols: bubble groups, handwashing, face masks, and conducting activities mostly outdoors. Contacts of a primary case within the same bubble were evaluated by nasopharyngeal RT-PCR. Secondary attack rates and the effective reproduction number in summer schools (Re*) were calculated. RESULTS: Among the >2000 repeatedly screened participants, 30 children and 9 adults were identified as primary cases. A total of 253 close contacts of these primary cases were studied (median, 9 [interquartile range, 5-10] for each primary case), among which 12 new cases (4.7%) were positive for SARS-CoV-2. The Re* was 0.3, whereas the contemporary rate in the general population from the same areas in Barcelona was 1.9. CONCLUSIONS: The transmission rate of SARS-CoV-2 infection among children attending school-like facilities under strict prevention measures was lower than that reported for the general population. This suggests that under preventive measures schools are unlikely amplifiers of SARS-CoV-2 transmission, supporting current recommendations for school opening.


Subject(s)
COVID-19 , Adult , Child , Humans , Pandemics , SARS-CoV-2 , Schools , Spain/epidemiology
11.
Vaccines (Basel) ; 10(1)2021 Dec 31.
Article in English | MEDLINE | ID: covidwho-1614022

ABSTRACT

(1) Background: In epidemiological terms, it has been possible to calculate the savings in health resources and the reduction in the health effects of COVID vaccines. Conducting an economic evaluation, some studies have estimated its cost-effectiveness; the vaccination shows highly favorable results, cost-saving in some cases. (2) Methods: Cost-benefit analysis of the vaccination campaign in the North Metropolitan Health Region (Catalonia). An epidemiological model based on observational data and before and after comparison is used. The information on the doses used and the assigned resources (conventional hospital beds, ICU, number of tests) was extracted from administrative data from the largest primary care provider in the region (Catalan Institute of Health). A distinction was made between the social perspective and the health system. (3) Results: the costs of vaccination are estimated at 137 million euros (€48.05/dose administered). This figure is significantly lower than the positive impacts of the vaccination campaign, which are estimated at 470 million euros (€164/dose administered). Of these, 18% corresponds to the reduction in ICU discharges, 16% to the reduction in conventional hospital discharges, 5% to the reduction in PCR tests and 1% to the reduction in RAT tests. The monetization of deaths and cases that avoid sequelae account for 53% and 5% of total savings, respectively. The benefit/cost ratio is estimated at 3.4 from a social perspective and 1.4 from a health system perspective. The social benefits of vaccination are estimated at €116.67 per vaccine dose (€19.93 from the perspective of the health system). (4) Conclusions: The mass vaccination campaign against COVID is cost-saving. From a social perspective, most of these savings come from the monetization of the reduction in mortality and cases with sequelae, although the intervention is equally widely cost-effective from the health system perspective thanks to the reduction in the use of resources. It is concluded that, from an economic perspective, the vaccination campaign has high social returns.

12.
Viruses ; 14(1)2021 12 30.
Article in English | MEDLINE | ID: covidwho-1580399

ABSTRACT

BACKGROUND: Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is neither always accessible nor easy to perform in children. We aimed to propose a machine learning model to assess the need for a SARS-CoV-2 test in children (<16 years old), depending on their clinical symptoms. METHODS: Epidemiological and clinical data were obtained from the REDCap® registry. Overall, 4434 SARS-CoV-2 tests were performed in symptomatic children between 1 November 2020 and 31 March 2021, 784 were positive (17.68%). We pre-processed the data to be suitable for a machine learning (ML) algorithm, balancing the positive-negative rate and preparing subsets of data by age. We trained several models and chose those with the best performance for each subset. RESULTS: The use of ML demonstrated an AUROC of 0.65 to predict a COVID-19 diagnosis in children. The absence of high-grade fever was the major predictor of COVID-19 in younger children, whereas loss of taste or smell was the most determinant symptom in older children. CONCLUSIONS: Although the accuracy of the models was lower than expected, they can be used to provide a diagnosis when epidemiological data on the risk of exposure to COVID-19 is unknown.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Adolescent , COVID-19/epidemiology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Machine Learning , Male , Models, Statistical , Predictive Value of Tests
13.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-295343

ABSTRACT

(1) Background: in epidemiological terms, it has been possible to calculate the savings in health resources and the reduction in health effects of COVID vaccines. From the point of view of economic evaluation, some studies have estimated its cost-effectiveness with the vaccination showing highly favorable results, which in some cases is cost-saving;(2) Methods: a cost-benefit analysis of the vaccination campaign in the North Metropolitan Health Region (Catalonia). An epidemiological model based on observational data and before and after comparison is used. The information on the doses used and the resources assigned (conventional hospital beds, ICU, number of tests) has been extracted from administrative data from the largest Primary Care provider in the region (Catalan Institute of Health). A distinction is made between the social perspective and the health system;(3) Results: the costs of vaccination are estimated at 137 million euros (€48.05/dose administered). This figure is significantly lower than the positive impacts of the vaccination campaign, which are estimated at 470 million euros (€164/dose administered). Of these, 18% corresponds to the reduction of ICU discharges, 16% to the reduction in conventional hospital discharges, 5% to the reduction in PCR tests and 1% to the reduction of RAT tests. Monetization of deaths and cases with sequelae avoided account for 53% and 5% of total savings, respectively. The benefit/cost ratio is estimated at 3.4 from a social perspective and 1.41 from a health system perspective. The social benefits of vaccination are estimated at €116.67 per dose of vaccine given (€19.93 from the point of view of the health system);(4) Conclusions: the mass vaccination campaign against COVID is cost-saving. From a social perspective, most of these savings come from the monetization of the reduction in mortality and cases with sequelae, although the intervention is equally widely cost-effective from the point of view of the health system thanks to the reduction in the use of resources. It is concluded that, from an economic perspective, the vaccination campaign has high social returns.

14.
Front Pediatr ; 9: 754744, 2021.
Article in English | MEDLINE | ID: covidwho-1441127

ABSTRACT

Objective: We describe and analyze the childhood (<18 years) COVID-19 incidence in Catalonia, Spain, during the first 36 weeks of the 2020-2021 school-year and to compare it with the incidence in adults. Methods: Data on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tests were obtained from the Catalan Agency for Quality and Health Assessment. Overall, 7,203,663 SARS-CoV-2 tests were performed, of which 491,819 were positive (6.8%). We collected epidemiological data including age-group incidence, diagnostic effort, and positivity rate per 100,000 population to analyze the relative results for these epidemiological characteristics. Results: Despite a great diagnostic effort among children, with a difference of 1,154 tests per 100,000 population in relation to adults, the relative incidence of SARS-CoV-2 for <18 years was slightly lower than for the general population, and it increased with the age of the children. Additionally, positivity of SARS-CoV-2 in children (5.7%) was lower than in adults (7.2%), especially outside vacation periods, when children were attending school (4.9%). Conclusions: A great diagnostic effort, including mass screening and systematic whole-group contact tracing when a positive was detected in the class group, was associated with childhood SARS-CoV-2 incidence and lower positivity rate in the 2020-2021 school year. Schools have been a key tool in epidemiological surveillance rather than being drivers of SARS-CoV-2 incidence in Catalonia, Spain.

15.
Sci Rep ; 11(1): 18812, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434151

ABSTRACT

Different strategies have been used to maximise the effect of COVID-19 vaccination campaigns in Europe. We modelled the impact of different prioritisation choices and dose intervals on infections, hospitalisations, mortality, and public health restrictions. An agent-based model was built to quantify the impact of different vaccination strategies over 6 months. Input parameters were derived from published phase 3 trials and official European figures. We explored the effect of prioritising vulnerable people, care-home staff and residents, versus contagious groups; and the impact of dose intervals ranging from 3 to 12 weeks. Prioritising vulnerable people, rather than the most contagious, led to higher numbers of COVID-19 infections, whilst reducing mortality, hospital admissions, and public health restrictions. At a realistic vaccination speed of ≤ 0·1% population/day, separating doses by 12 weeks (vs a baseline scenario of 3 weeks) reduced hospitalisations, mortality, and restrictions for vaccines with similar first- and second-dose efficacy (e.g., the Oxford-AstraZeneca and Moderna vaccines), but not for those with lower first vs second-dose efficacy (e.g., the Pfizer/BioNTech vaccine). Mass vaccination will dramatically reduce the effect of COVID-19 on Europe's health and economy. Early vaccination of vulnerable populations will reduce mortality, hospitalisations, and public health restrictions compared to prioritisation of the most contagious people. The choice of interval between doses should be based on expected vaccine availability and first-dose efficacy, with 12-week intervals preferred over shorter intervals in most realistic scenarios.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Mass Vaccination/methods , Mass Vaccination/statistics & numerical data , COVID-19/epidemiology , Cohort Studies , Computer Simulation , Disease Susceptibility , Europe/epidemiology , Hospitalization/statistics & numerical data , Humans , Immunization Schedule , Models, Theoretical , Public Health/methods , Time Factors , Vulnerable Populations
16.
Int J Environ Res Public Health ; 18(17)2021 09 04.
Article in English | MEDLINE | ID: covidwho-1390645

ABSTRACT

The COVID-19 pandemic has highlighted the global imperative to address health inequities. Observational studies are a valuable source of evidence for real-world effects and impacts of implementing COVID-19 policies on the redistribution of inequities. We assembled a diverse global multi-disciplinary team to develop interim guidance for improving transparency in reporting health equity in COVID-19 observational studies. We identified 14 areas in the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) checklist that need additional detail to encourage transparent reporting of health equity. We searched for examples of COVID-19 observational studies that analysed and reported health equity analysis across one or more social determinants of health. We engaged with Indigenous stakeholders and others groups experiencing health inequities to co-produce this guidance and to bring an intersectional lens. Taking health equity and social determinants of health into account contributes to the clinical and epidemiological understanding of the disease, identifying specific needs and supporting decision-making processes. Stakeholders are encouraged to consider using this guidance on observational research to help provide evidence to close the inequitable gaps in health outcomes.


Subject(s)
COVID-19 , Health Equity , Humans , Pandemics , SARS-CoV-2 , Social Justice
17.
Front Public Health ; 9: 633123, 2021.
Article in English | MEDLINE | ID: covidwho-1325582

ABSTRACT

The current worldwide pandemic produced by coronavirus disease 2019 (COVID-19) has changed the paradigm of mathematical epidemiology due to the high number of unknowns of this new disease. Thus, the empirical approach has emerged as a robust tool to analyze the actual situation carried by the countries and also allows us to predict the incoming scenarios. In this paper, we propose three empirical indexes to estimate the state of the pandemic. These indexes quantify both the propagation and the number of estimated cases, allowing us to accurately determine the real risk of a country. We have calculated these indexes' evolution for several European countries. Risk diagrams are introduced as a tool to visualize the evolution of a country and evaluate its current risk as a function of the number of contagious individuals and the empiric reproduction number. Risk diagrams at the regional level are useful to observe heterogeneity on COVID-19 penetration and spreading in some countries, which is essential during deconfinement processes. During the pandemic, there have been significant differences seen in countries reporting case criterion and detection capacity. Therefore, we have introduced estimations about the real number of infectious cases that allows us to have a broader view and to better estimate the risk. These diagrams and indexes have been successfully used for the monitoring of European countries and regions during the COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , Europe , Humans , SARS-CoV-2
18.
Front Public Health ; 9: 693956, 2021.
Article in English | MEDLINE | ID: covidwho-1320593

ABSTRACT

Monitoring transmission is a prerequisite for containing COVID-19. We report on effective potential growth (EPG) as a novel measure for the early identification of local outbreaks based on primary care electronic medical records (EMR) and PCR-confirmed cases. Secondly, we studied whether increasing EPG precedes local hospital and intensive care (ICU) admissions and mortality. Population-based cohort including all Catalan citizens' PCR tests, hospitalization, intensive care (ICU) and mortality between 1/07/2020 and 13/09/2020; linked EMR covering 88.6% of the Catalan population was obtained. Nursing home residents were excluded. COVID-19 counts were ascertained based on EMR and PCRs separately. Weekly empirical propagation (ρ7) and 14-day cumulative incidence (A14) and 95% confidence intervals were estimated at care management area (CMA) level, and combined as EPG = ρ7 × A14. Overall, 7,607,201 and 6,798,994 people in 43 CMAs were included for PCR and EMR measures, respectively. A14, ρ7, and EPG increased in numerous CMAs during summer 2020. EMR identified 2.70-fold more cases than PCRs, with similar trends, a median (interquartile range) 2 (1) days earlier, and better precision. Upticks in EPG preceded increases in local hospital admissions, ICU occupancy, and mortality. Increasing EPG identified localized outbreaks in Catalonia, and preceded local hospital and ICU admissions and subsequent mortality. EMRs provided similar estimates to PCR, but some days earlier and with better precision. EPG is a useful tool for the monitoring of community transmission and for the early identification of COVID-19 local outbreaks.


Subject(s)
COVID-19 , Disease Outbreaks , Electronic Health Records , Humans , Primary Health Care , Prospective Studies , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Spain/epidemiology
20.
PLoS One ; 16(1): e0243701, 2021.
Article in English | MEDLINE | ID: covidwho-1060187

ABSTRACT

Policymakers need clear, fast assessment of the real spread of the COVID-19 epidemic in each of their respective countries. Standard measures of the situation provided by the governments include reported positive cases and total deaths. While total deaths indicate immediately that countries like Italy and Spain had the worst situation as of mid-April, 2020, reported cases alone do not provide a complete picture of the situation. Different countries diagnose differently and present very distinctive reported case fatality ratios. Similar levels of reported incidence and mortality might hide a very different underlying pictures. Here we present a straightforward and robust estimation of the diagnostic rate in each European country. From that estimation we obtain a uniform, unbiased incidence of the epidemic. The method to obtain the diagnostic rate is transparent and empirical. The key assumption of the method is that the infection fatality ratio of COVID-19 in Europe is not strongly country-dependent. We show that this number is not expected to be biased due to demography nor to the way total deaths are reported. The estimation protocol is dynamic, and it has been yielding converging numbers for diagnostic rates in all European countries as from mid-April, 2020. Using this diagnostic rate, policy makers can obtain Effective Potential Growth updated every day, providing an unbiased assessment of the countries at greater risk of experiencing an uncontrolled situation. The method developed has been and will be used to track possible improvements in the diagnostic rate in European countries as the epidemic evolves.


Subject(s)
COVID-19/epidemiology , Basic Reproduction Number , COVID-19/diagnosis , COVID-19/mortality , COVID-19/prevention & control , Communicable Disease Control , Europe/epidemiology , European Union , Health Policy , Humans , Incidence
SELECTION OF CITATIONS
SEARCH DETAIL