Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Cardiovasc Diabetol ; 20(1): 218, 2021 11 06.
Article in English | MEDLINE | ID: covidwho-1503722

ABSTRACT

Type 2 diabetes is one of the most relevant risk factors for heart failure, the prevalence of which is increasing worldwide. The aim of the review is to highlight the current perspectives of the pathophysiology of heart failure as it pertains to type 2 diabetes. This review summarizes the proposed mechanistic bases, explaining the myocardial damage induced by diabetes-related stressors and other risk factors, i.e., cardiomyopathy in type 2 diabetes. We highlight the complex pathology of individuals with type 2 diabetes, including the relationship with chronic kidney disease, metabolic alterations, and heart failure. We also discuss the current criteria used for heart failure diagnosis and the gold standard screening tools for individuals with type 2 diabetes. Currently approved pharmacological therapies with primary use in type 2 diabetes and heart failure, and the treatment-guiding role of NT-proBNP are also presented. Finally, the influence of the presence of type 2 diabetes as well as heart failure on COVID-19 severity is briefly discussed.


Subject(s)
COVID-19/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Disease Management , Heart Failure/epidemiology , Mass Screening/methods , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Glycated Hemoglobin A/metabolism , Heart Failure/blood , Heart Failure/diagnosis , Humans , Mass Screening/trends , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Prognosis
3.
iScience ; 24(8): 102898, 2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1322153

ABSTRACT

The clinical benefit of convalescent plasma (CP) for patients with coronavirus disease (COVID)-19 is still debated. In this systematic review and meta-analysis, we selected 10 randomized clinical trials (RCTs) and 15 non-randomized studies (total number of patients = 22,591) of CP treatment and evaluated two different scenarios: (1) disease stage of plasma recipients and (2) donated plasma antibody titer, considering all-cause mortality at the latest follow-up. Our results show that, when provided at early stages of the disease, CP significantly reduced mortality: risk ratio (RR) 0.72 (0.68, 0.77), p < 0.00001, while provided in severe or critical conditions, it did not (RR: 0.94 [0.86, 1.04], p = 0.22). On the other hand, the benefit on mortality was not increased by using plasma with a high-antibody titer compared with unselected plasma. This meta-analysis might promote CP usage in patients with early-stage COVID-19 in further RCTs to maximize its benefit in decreasing mortality, especially in less affluent countries.

4.
Diabetes Metab Res Rev ; : e3476, 2021 May 20.
Article in English | MEDLINE | ID: covidwho-1245386

ABSTRACT

AIMS: Diabetes is emerging as a risk factor for coronavirus disease (COVID)-19 prognosis. However, contradictory findings have been reported regarding the impact of glycaemic control on COVID-19 outcome. The aim of this meta-analysis was to explore the impact of hospital pre-admission or at-admission values of HbA1c on COVID-19 mortality or worsening in patients with diabetes. MATERIALS AND METHODS: We searched PubMed, Embase and Scopus up to 30th December 2020. Eligibility criteria for study selection were the following: (1)enrolling patients with any form of diabetes mellitus and hospitalized for COVID-19 and (2) reporting data regarding HbA1c values before infection or at hospital admission in relation to COVID-19 mortality or worsening. Descriptive statistics, HbA1c values, odds ratios (ORs) and hazard ratios were extracted from seven observational studies and generic inverse variance (random effects) of OR was used to estimate the effect of HbA1c on COVID-19 outcome. RESULTS: HbA1c was linearly associated with an increased COVID-19 mortality or worsening when considered as a continuous variable (OR 1.01 [1.01, 1.01]; p < 0.00001). Similarly, when analysing studies providing the number of events according to the degree of glycaemic control among various strata, a significantly increased risk was observed with poor glycaemic control (OR 1.15 [1.11, 1.19]; p < 0.00001), a result corroborated by sensitivity analysis. CONCLUSIONS: Notwithstanding the large heterogeneity in study design and patients' characteristics in the few available studies, data suggest that patients with diabetes and poor glycaemic control before infection might have an increased risk of COVID-19 related mortality.

5.
J Diabetes Complications ; 35(7): 107927, 2021 07.
Article in English | MEDLINE | ID: covidwho-1188733

ABSTRACT

Evidence suggests that diabetes is one the most relevant comorbidity in affecting the prognosis of COVID-19. Albeit there are no specific trials nor subgroup analysis showing the effect of COVID-19 therapies in patients with diabetes, selected features of this disease and the side effects associated with certain drugs require a proper knowledge to optimize the pharmacological therapy of patients with diabetes and COVID-19. While chronic anti-hypertensive and glucose-lowering therapies should not be discontinued nor preferred for preventive purposes, the low-grade pro-inflammatory, the thrombosis-prone status of diabetes, the role of acute hyperglycaemia in promoting adverse outcomes in patients admitted to ICU, and the observed increased mortality in patients with poor long-term glycaemic control delineate a delicate balance in case of severe forms of COVID-19. Here, we briefly summarized some of the key pharmacological issues linked to the management of patients with diabetes and COVID-19, in order to provide indications to minimize the deleterious effects of the concomitant presentation of these diseases and to use the existing pharmacological options in an appropriate manner.


Subject(s)
COVID-19/complications , COVID-19/drug therapy , Diabetes Mellitus, Type 2/complications , Humans
6.
Lancet Healthy Longev ; 2(4): e191, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1164732
7.
Trends Immunol ; 42(1): 18-30, 2021 01.
Article in English | MEDLINE | ID: covidwho-1065237

ABSTRACT

Severe infection with severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is characterized by massive cytokine release and T cell loss. The exaggerated host immune response, incapable of viral clearance, instead aggravates respiratory distress, as well as cardiac, and/or damage to other organs. The mortality pattern of SARS-CoV-2 infection, higher in older versus younger adults and almost absent in children, is possibly caused by the effects of age and pre-existing comorbidities on innate and adaptive immunity. Here, we speculate that the abnormal and excessive immune response to SARS-CoV-2 infection partly depends on T cell immunological memory, which is more pronounced in adults compared with children, and may significantly contribute to immunopathology and massive collateral damage in coronavirus disease 2019 (COVID-19) patients.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Immunity, Innate/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , COVID-19/prevention & control , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Humans , Immunologic Memory/immunology , Models, Immunological , SARS-CoV-2/physiology , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
10.
Cytokine Growth Factor Rev ; 53: 33-37, 2020 06.
Article in English | MEDLINE | ID: covidwho-154941

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is characterized by a high mortality of elderly men with age-related comorbidities. In most of these patients, uncontrolled local and systemic hyperinflammation induces severe and often lethal outcomes. The aging process is characterized by the gradual development of a chronic subclinical systemic inflammation (inflamm-aging) and by acquired immune system impairment (immune senescence). Here, we advance the hypothesis that four well-recognized features of aging contribute to the disproportionate SARS-CoV-2 mortality suffered by elderly men: i. the presence of subclinical systemic inflammation without overt disease, ii. a blunted acquired immune system and type I interferon response due to the chronic inflammation; iii. the downregulation of ACE2 (i.e. the SARS-CoV-2 receptor); and iv. accelerated biological aging. The high mortality rate of SARS-CoV-2 infection suggests that clarification of the mechanisms of inflamm-aging and immune senescence can help combat not only age-related disorders but also SARS-CoV-2 infection.


Subject(s)
Aging/pathology , Coronavirus Infections/mortality , Coronavirus Infections/pathology , Interleukin-6/immunology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/mortality , Pneumonia, Viral/pathology , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus/immunology , COVID-19 , Comorbidity , Coronavirus Infections/drug therapy , Female , Humans , Inflammation/pathology , Interferon Type I/blood , Interferon Type I/immunology , Interleukin-6/antagonists & inhibitors , Male , Pandemics , Peptidyl-Dipeptidase A/biosynthesis , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/mortality , Severe Acute Respiratory Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...