Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Virol ; 96(11): e0059422, 2022 06 08.
Article in English | MEDLINE | ID: covidwho-1840553

ABSTRACT

It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human lung cells, cardiomyocytes, and gut organoids. To date, several "variants of concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the five current SARS-CoV-2 VOCs (Alpha, Beta, Gamma, Delta, and Omicron) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had modest effects, while knockdown of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than 4 orders of magnitude. In addition, an antibody directed against the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells, thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominant Omicron variant. IMPORTANCE Recent data indicate that SARS-CoV-2 requires endogenously expressed IFITM proteins for efficient infection. However, the results were obtained with an early SARS-CoV-2 isolate. Thus, it remained to be determined whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that outcompeted the original strains in the meantime. This includes the Omicron VOC, which currently dominates the pandemic. Here, we show that depletion of endogenous IFITM2 expression almost entirely prevents productive infection of Alpha, Beta, Gamma, Delta, and Omicron SARS-CoV-2 VOCs in human lung cells. In addition, an antibody targeting the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs, including the currently dominant Omicron variant, are strongly dependent on IFITM2 for efficient replication, suggesting a key proviral role of IFITMs in viral transmission and pathogenicity.


Subject(s)
Lung , Membrane Proteins , SARS-CoV-2 , Virus Replication , COVID-19/virology , Cell Line, Tumor , Humans , Lung/virology , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Virus Internalization
2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296869

ABSTRACT

It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human cells. To date, several "Variants of Concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the four SARS-CoV-2 VOCs (Alpha, Beta, Gamma and Delta) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all four VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had little effect, while knock-down of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than four orders of magnitude. In addition, an antibody directed against the N-terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominating Delta variant.

3.
Nat Commun ; 12(1): 6855, 2021 11 25.
Article in English | MEDLINE | ID: covidwho-1537312

ABSTRACT

The bat sarbecovirus RaTG13 is a close relative of SARS-CoV-2, the cause of the COVID-19 pandemic. However, this bat virus was most likely unable to directly infect humans since its Spike (S) protein does not interact efficiently with the human ACE2 receptor. Here, we show that a single T403R mutation increases binding of RaTG13 S to human ACE2 and allows VSV pseudoparticle infection of human lung cells and intestinal organoids. Conversely, mutation of R403T in the SARS-CoV-2 S reduces pseudoparticle infection and viral replication. The T403R RaTG13 S is neutralized by sera from individuals vaccinated against COVID-19 indicating that vaccination might protect against future zoonoses. Our data suggest that a positively charged amino acid at position 403 in the S protein is critical for efficient utilization of human ACE2 by S proteins of bat coronaviruses. This finding could help to better predict the zoonotic potential of animal coronaviruses.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Animals , COVID-19/virology , COVID-19 Vaccines , Caco-2 Cells , Cloning, Molecular , HEK293 Cells , Humans , Molecular Dynamics Simulation , Mutation , Replicon , Species Specificity , Stem Cells , Zoonoses
4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293046

ABSTRACT

We have recently shown that a SARS-CoV-2 strain isolated in the Netherlands in February 2020 (NL-02-2020) hijacks interferon-induced transmembrane proteins, especially IFITM2, as entry cofactors for efficient infection. Here, we examined whether SARS-CoV-2 'variants of concern' (VOCs), including the currently dominating delta variant, maintained the dependency on IFITMs for efficient replication. Depletion of IFITM2 reduced viral RNA production from 31- (B.1.1.7) to 755-fold (P.1). In comparison, silencing of IFITM1 had little effect, while knock-down of IFITM3 resulted in an intermediate phenotype. Strikingly, silencing of IFITM2 generally reduced infectious virus production in Calu-3 cells to near background levels. An antibody directed against the N-terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are important cofactors for replication of genuine SARS-CoV-2 VOCs, including the Delta variant.

5.
Nat Commun ; 12(1): 4584, 2021 07 28.
Article in English | MEDLINE | ID: covidwho-1387354

ABSTRACT

Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) can restrict viral pathogens, but pro- and anti-viral activities have been reported for coronaviruses. Here, we show that artificial overexpression of IFITMs blocks SARS-CoV-2 infection. However, endogenous IFITM expression supports efficient infection of SARS-CoV-2 in human lung cells. Our results indicate that the SARS-CoV-2 Spike protein interacts with IFITMs and hijacks them for efficient viral infection. IFITM proteins were expressed and further induced by interferons in human lung, gut, heart and brain cells. IFITM-derived peptides and targeting antibodies inhibit SARS-CoV-2 entry and replication in human lung cells, cardiomyocytes and gut organoids. Our results show that IFITM proteins are cofactors for efficient SARS-CoV-2 infection of human cell types representing in vivo targets for viral transmission, dissemination and pathogenesis and are potential targets for therapeutic approaches.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Antigens, Differentiation/genetics , Membrane Proteins/genetics , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/pharmacology , Antigens, Differentiation/metabolism , Binding Sites , COVID-19/virology , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Interferon-beta/pharmacology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment/drug effects
6.
Biomolecules ; 11(5)2021 05 17.
Article in English | MEDLINE | ID: covidwho-1234665

ABSTRACT

Cm-p5 is a snail-derived antimicrobial peptide, which demonstrated antifungal activity against the pathogenic strains of Candida albicans. Previously we synthetized a cyclic monomer as well as a parallel and an antiparallel dimer of Cm-p5 with improved antifungal activity. Considering the alarming increase of microbial resistance to conventional antibiotics, here we evaluated the antimicrobial activity of these derivatives against multiresistant and problematic bacteria and against important viral agents. The three peptides showed a moderate activity against Pseudomonas aeruginosa, Klebsiella pneumoniae Extended Spectrum ß-Lactamase (ESBL), and Streptococcus agalactiae, with MIC values > 100 µg/mL. They exerted a considerable activity with MIC values between 25-50 µg/mL against Acinetobacter baumanii and Enterococcus faecium. In addition, the two dimers showed a moderate activity against Pseudomonas aeruginosa PA14. The three Cm-p5 derivatives inhibited a virulent extracellular strain of Mycobacterium tuberculosis, in a dose-dependent manner. Moreover, they inhibited Herpes Simplex Virus 2 (HSV-2) infection in a concentration-dependent manner, but had no effect on infection by the Zika Virus (ZIKV) or pseudoparticles of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). At concentrations of >100 µg/mL, the three new Cm-p5 derivatives showed toxicity on different eukaryotic cells tested. Considering a certain cell toxicity but a potential interesting activity against the multiresistant strains of bacteria and HSV-2, our compounds require future structural optimization.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antiviral Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Herpesvirus 2, Human/drug effects , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/chemistry , Candida albicans/drug effects , Cell Line , Cell Survival/drug effects , Dimerization , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Microbial Sensitivity Tests , SARS-CoV-2/drug effects
7.
Cell Rep ; 35(7): 109126, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1222854

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evades most innate immune responses but may still be vulnerable to some. Here, we systematically analyze the impact of SARS-CoV-2 proteins on interferon (IFN) responses and autophagy. We show that SARS-CoV-2 proteins synergize to counteract anti-viral immune responses. For example, Nsp14 targets the type I IFN receptor for lysosomal degradation, ORF3a prevents fusion of autophagosomes and lysosomes, and ORF7a interferes with autophagosome acidification. Most activities are evolutionarily conserved. However, SARS-CoV-2 Nsp15 antagonizes IFN signaling less efficiently than the orthologs of closely related RaTG13-CoV and SARS-CoV-1. Overall, SARS-CoV-2 proteins counteract autophagy and type I IFN more efficiently than type II or III IFN signaling, and infection experiments confirm potent inhibition by IFN-γ and -λ1. Our results define the repertoire and selected mechanisms of SARS-CoV-2 innate immune antagonists but also reveal vulnerability to type II and III IFN that may help to develop safe and effective anti-viral approaches.


Subject(s)
COVID-19/virology , SARS-CoV-2/immunology , Viral Proteins/immunology , Animals , Antiviral Agents/pharmacology , Autophagosomes/immunology , Autophagy/immunology , COVID-19/immunology , Cell Line , Chlorocebus aethiops , Exoribonucleases/immunology , HEK293 Cells , HeLa Cells , Humans , Immune Evasion , Immunity, Innate , Interferon Type I/metabolism , Interferons/metabolism , Receptor, Interferon alpha-beta/antagonists & inhibitors , Receptor, Interferon alpha-beta/immunology , SARS-CoV-2/pathogenicity , Vero Cells , Viral Nonstructural Proteins/immunology
8.
Nat Commun ; 12(1): 1726, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1142436

ABSTRACT

SARS-CoV-2 is a respiratory pathogen and primarily infects the airway epithelium. As our knowledge about innate immune factors of the respiratory tract against SARS-CoV-2 is limited, we generated and screened a peptide/protein library derived from bronchoalveolar lavage for inhibitors of SARS-CoV-2 spike-driven entry. Analysis of antiviral fractions revealed the presence of α1-antitrypsin (α1AT), a highly abundant circulating serine protease inhibitor. Here, we report that α1AT inhibits SARS-CoV-2 entry at physiological concentrations and suppresses viral replication in cell lines and primary cells including human airway epithelial cultures. We further demonstrate that α1AT binds and inactivates the serine protease TMPRSS2, which enzymatically primes the SARS-CoV-2 spike protein for membrane fusion. Thus, the acute phase protein α1AT is an inhibitor of TMPRSS2 and SARS-CoV-2 entry, and may play an important role in the innate immune defense against the novel coronavirus. Our findings suggest that repurposing of α1AT-containing drugs has prospects for the therapy of COVID-19.


Subject(s)
COVID-19/drug therapy , SARS-CoV-2/drug effects , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , alpha 1-Antitrypsin/pharmacology , Antibodies, Viral/blood , Antiviral Agents/pharmacology , COVID-19/blood , Caco-2 Cells , Humans , Immunoglobulin G/blood , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL