Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Lancet Glob Health ; 11(1): e48-e58, 2023 01.
Article in English | MEDLINE | ID: covidwho-2159976

ABSTRACT

BACKGROUND: The WHO Strategic Advisory Group of Experts recommended that an extended interval of 3-5 years between the two doses of the human papillomavirus (HPV) vaccine could be considered to alleviate vaccine supply shortages. However, three concerns have limited the introduction of extended schedules: girls could be infected between the two doses, the vaccination coverage for the second dose could be lower at ages 13-14 years than at ages 9-10 years, and identifying girls vaccinated with a first dose to give them the second dose could be difficult. Using mathematical modelling, we examined the potential effect of these concerns on the population-level impact and efficiency of extended dose HPV vaccination schedules. METHODS: We used HPV-ADVISE, an individual-based, transmission-dynamic model of multitype HPV infection and disease, calibrated to country-specific data for four low-income and middle-income countries (India, Viet Nam, Uganda, and Nigeria). For the extended dose scenarios, we varied the vaccination coverage of the second dose among girls previously vaccinated, the one-dose vaccine efficacy, and the one-dose vaccine duration of protection. We also examined a strategy in which girls aged 14 years were vaccinated irrespective of their previous vaccination status. We used a scenario of girls-only two-dose vaccination at age 9 years (vaccine=9 valent, vaccine-type efficacy=100%, duration of protection=lifetime, and coverage=80%) as our comparator. We estimated two outcomes: the relative reduction in the age-standardised cervical cancer incidence (population-level impact) and the number of cervical cancers averted per 100 000 doses (efficiency). FINDINGS: Our model projected substantial reductions in cervical cancer incidence over 100 years with the two-dose schedule (79-86% depending on the country), compared with no vaccination. Projections for the 5-year extended schedule, in which the second dose is given only to girls previously vaccinated at age 9 years, were similar to the current two-dose schedule, unless vaccination coverage of the second dose is very low (reductions in cervical cancer incidence of 71-78% assuming 30% coverage at age 14 years among girls vaccinated at age 9 years). However, when the dose at age 14 years is given to girls irrespective of vaccination status and assuming high vaccination coverage, the model projected a substantially greater reduction in cervical cancer incidence compared with the current two-dose schedule (reductions in cervical cancer incidence of 86-93% assuming 70% coverage at age 14 years, irrespective of vaccination status). Efficiency of the extended schedule was greater than the two-dose schedule, even with a drop in vaccination coverage. INTERPRETATION: The three concerns are unlikely to have a substantial effect on the population-level impact of extended dose schedules. Hence, extended dose schedules will likely provide similar cervical cancer reductions as two-dose schedules, while reducing the number of doses required in the short-term, providing a more efficient use of scarce resources, and offering a 5-year time window to reassess the necessity of the second dose. FUNDING: WHO, Canadian Institute of Health Research Foundation, Fonds de recherche du Québec-Santé, Digital Research Alliance of Canada, and Bill & Melinda Gates Foundation.


Subject(s)
COVID-19 , Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Female , Humans , Child , Adolescent , Papillomavirus Infections/epidemiology , Papillomavirus Infections/prevention & control , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/prevention & control , Human Papillomavirus Viruses , Developing Countries , COVID-19/epidemiology , COVID-19/prevention & control , Canada , Cost-Benefit Analysis
2.
PLoS Med ; 19(3): e1003907, 2022 03.
Article in English | MEDLINE | ID: covidwho-1714705

ABSTRACT

BACKGROUND: During the Coronavirus Disease 2019 (COVID-19) pandemic, the United Kingdom government imposed public health policies in England to reduce social contacts in hopes of curbing virus transmission. We conducted a repeated cross-sectional study to measure contact patterns weekly from March 2020 to March 2021 to estimate the impact of these policies, covering 3 national lockdowns interspersed by periods of less restrictive policies. METHODS AND FINDINGS: The repeated cross-sectional survey data were collected using online surveys of representative samples of the UK population by age and gender. Survey participants were recruited by the online market research company Ipsos MORI through internet-based banner and social media ads and email campaigns. The participant data used for this analysis are restricted to those who reported living in England. We calculated the mean daily contacts reported using a (clustered) bootstrap and fitted a censored negative binomial model to estimate age-stratified contact matrices and estimate proportional changes to the basic reproduction number under controlled conditions using the change in contacts as a scaling factor. To put the findings in perspective, we discuss contact rates recorded throughout the year in terms of previously recorded rates from the POLYMOD study social contact study. The survey recorded 101,350 observations from 19,914 participants who reported 466,710 contacts over 53 weeks. We observed changes in social contact patterns in England over time and by participants' age, personal risk factors, and perception of risk. The mean reported contacts for adults 18 to 59 years old ranged between 2.39 (95% confidence interval [CI] 2.20 to 2.60) contacts and 4.93 (95% CI 4.65 to 5.19) contacts during the study period. The mean contacts for school-age children (5 to 17 years old) ranged from 3.07 (95% CI 2.89 to 3.27) to 15.11 (95% CI 13.87 to 16.41). This demonstrates a sustained decrease in social contacts compared to a mean of 11.08 (95% CI 10.54 to 11.57) contacts per participant in all age groups combined as measured by the POLYMOD social contact study in 2005 to 2006. Contacts measured during periods of lockdowns were lower than in periods of eased social restrictions. The use of face coverings outside the home has remained high since the government mandated use in some settings in July 2020. The main limitations of this analysis are the potential for selection bias, as participants are recruited through internet-based campaigns, and recall bias, in which participants may under- or overreport the number of contacts they have made. CONCLUSIONS: In this study, we observed that recorded contacts reduced dramatically compared to prepandemic levels (as measured in the POLYMOD study), with changes in reported contacts correlated with government interventions throughout the pandemic. Despite easing of restrictions in the summer of 2020, the mean number of reported contacts only returned to about half of that observed prepandemic at its highest recorded level. The CoMix survey provides a unique repeated cross-sectional data set for a full year in England, from the first day of the first lockdown, for use in statistical analyses and mathematical modelling of COVID-19 and other diseases.


Subject(s)
COVID-19/psychology , Social Interaction , Adolescent , Adult , Aged , Attitude to Health , Cross-Sectional Studies , England , Female , Humans , Male , Middle Aged , Models, Psychological , Pandemics , Surveys and Questionnaires , Young Adult
3.
Philos Trans A Math Phys Eng Sci ; 380(2214): 20210124, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1528261

ABSTRACT

Prolonged school closure has been adopted worldwide to control COVID-19. Indeed, UN Educational, Scientific and Cultural Organization figures show that two-thirds of an academic year was lost on average worldwide due to COVID-19 school closures. Such pre-emptive implementation was predicated on the premise that school children are a core group for COVID-19 transmission. Using surveillance data from the Chinese cities of Shenzhen and Anqing together, we inferred that compared with the elderly aged 60 and over, children aged 18 and under and adults aged 19-59 were 75% and 32% less susceptible to infection, respectively. Using transmission models parametrized with synthetic contact matrices for 177 jurisdictions around the world, we showed that the lower susceptibility of school children substantially limited the effectiveness of school closure in reducing COVID-19 transmissibility. Our results, together with recent findings that clinical severity of COVID-19 in children is lower, suggest that school closure may not be ideal as a sustained, primary intervention for controlling COVID-19. This article is part of the theme issue 'Data science approach to infectious disease surveillance'.


Subject(s)
COVID-19 , Aged , Child , Humans , Middle Aged , SARS-CoV-2 , Schools
4.
PLoS Comput Biol ; 17(7): e1009098, 2021 07.
Article in English | MEDLINE | ID: covidwho-1325365

ABSTRACT

Mathematical models have played a key role in understanding the spread of directly-transmissible infectious diseases such as Coronavirus Disease 2019 (COVID-19), as well as the effectiveness of public health responses. As the risk of contracting directly-transmitted infections depends on who interacts with whom, mathematical models often use contact matrices to characterise the spread of infectious pathogens. These contact matrices are usually generated from diary-based contact surveys. However, the majority of places in the world do not have representative empirical contact studies, so synthetic contact matrices have been constructed using more widely available setting-specific survey data on household, school, classroom, and workplace composition combined with empirical data on contact patterns in Europe. In 2017, the largest set of synthetic contact matrices to date were published for 152 geographical locations. In this study, we update these matrices with the most recent data and extend our analysis to 177 geographical locations. Due to the observed geographic differences within countries, we also quantify contact patterns in rural and urban settings where data is available. Further, we compare both the 2017 and 2020 synthetic matrices to out-of-sample empirically-constructed contact matrices, and explore the effects of using both the empirical and synthetic contact matrices when modelling physical distancing interventions for the COVID-19 pandemic. We found that the synthetic contact matrices show qualitative similarities to the contact patterns in the empirically-constructed contact matrices. Models parameterised with the empirical and synthetic matrices generated similar findings with few differences observed in age groups where the empirical matrices have missing or aggregated age groups. This finding means that synthetic contact matrices may be used in modelling outbreaks in settings for which empirical studies have yet to be conducted.


Subject(s)
COVID-19/epidemiology , Age Distribution , COVID-19/virology , Empirical Research , Europe/epidemiology , Geography , Humans , Pandemics , Rural Population , SARS-CoV-2/isolation & purification , Urban Population
5.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200274, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1309692

ABSTRACT

The dynamics of immunity are crucial to understanding the long-term patterns of the SARS-CoV-2 pandemic. Several cases of reinfection with SARS-CoV-2 have been documented 48-142 days after the initial infection and immunity to seasonal circulating coronaviruses is estimated to be shorter than 1 year. Using an age-structured, deterministic model, we explore potential immunity dynamics using contact data from the UK population. In the scenario where immunity to SARS-CoV-2 lasts an average of three months for non-hospitalized individuals, a year for hospitalized individuals, and the effective reproduction number after lockdown ends is 1.2 (our worst-case scenario), we find that the secondary peak occurs in winter 2020 with a daily maximum of 387 000 infectious individuals and 125 000 daily new cases; threefold greater than in a scenario with permanent immunity. Our models suggest that longitudinal serological surveys to determine if immunity in the population is waning will be most informative when sampling takes place from the end of the lockdown in June until autumn 2020. After this period, the proportion of the population with antibodies to SARS-CoV-2 is expected to increase due to the secondary wave. Overall, our analysis presents considerations for policy makers on the longer-term dynamics of SARS-CoV-2 in the UK and suggests that strategies designed to achieve herd immunity may lead to repeated waves of infection as immunity to reinfection is not permanent. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control/trends , Pandemics , SARS-CoV-2/pathogenicity , Basic Reproduction Number/statistics & numerical data , COVID-19/virology , Humans , United Kingdom/epidemiology
6.
Wellcome Open Res ; 5: 59, 2020.
Article in English | MEDLINE | ID: covidwho-1068024

ABSTRACT

Background: Several non-pharmaceutical interventions (NPIs) have been implemented across the world to control the coronavirus disease (COVID-19) pandemic. Social distancing (SD) interventions applied so far have included school closures, remote working and quarantine. These measures have been shown to have large impacts on pandemic influenza transmission. However, there has been comparatively little examination of such measures for COVID-19. Methods: We examined the existing literature, and collated data, on implementation of NPIs to examine their effects on the COVID-19 pandemic so far. Data on NPIs were collected from official government websites as well as from media sources. Results: Measures such as travel restrictions have been implemented in multiple countries and appears to have slowed the geographic spread of COVID-19 and reduced initial case numbers. We find that, due to the relatively sparse information on the differences with and without interventions, it is difficult to quantitatively assess the efficacy of many interventions. Similarly, whilst the comparison to other pandemic diseases such as influenza can be helpful, there are key differences that could affect the efficacy of similar NPIs. Conclusions: The timely implementation of control measures is key to their success and must strike a balance between early enough application to reduce the peak of the epidemic and ensuring that they can be feasibly maintained for an appropriate duration. Such measures can have large societal impacts and they need to be appropriately justified to the population. As the pandemic of COVID-19 progresses, quantifying the impact of interventions will be a vital consideration for the appropriate use of mitigation strategies.

7.
BMC Med ; 18(1): 316, 2020 10 05.
Article in English | MEDLINE | ID: covidwho-814583

ABSTRACT

BACKGROUND: Many low- and middle-income countries have implemented control measures against coronavirus disease 2019 (COVID-19). However, it is not clear to what extent these measures explain the low numbers of recorded COVID-19 cases and deaths in Africa. One of the main aims of control measures is to reduce respiratory pathogen transmission through direct contact with others. In this study, we collect contact data from residents of informal settlements around Nairobi, Kenya, to assess if control measures have changed contact patterns, and estimate the impact of changes on the basic reproduction number (R0). METHODS: We conducted a social contact survey with 213 residents of five informal settlements around Nairobi in early May 2020, 4 weeks after the Kenyan government introduced enhanced physical distancing measures and a curfew between 7 pm and 5 am. Respondents were asked to report all direct physical and non-physical contacts made the previous day, alongside a questionnaire asking about the social and economic impact of COVID-19 and control measures. We examined contact patterns by demographic factors, including socioeconomic status. We described the impact of COVID-19 and control measures on income and food security. We compared contact patterns during control measures to patterns from non-pandemic periods to estimate the change in R0. RESULTS: We estimate that control measures reduced physical contacts by 62% and non-physical contacts by either 63% or 67%, depending on the pre-COVID-19 comparison matrix used. Masks were worn by at least one person in 92% of contacts. Respondents in the poorest socioeconomic quintile reported 1.5 times more contacts than those in the richest. Eighty-six percent of respondents reported a total or partial loss of income due to COVID-19, and 74% reported eating less or skipping meals due to having too little money for food. CONCLUSION: COVID-19 control measures have had a large impact on direct contacts and therefore transmission, but have also caused considerable economic and food insecurity. Reductions in R0 are consistent with the comparatively low epidemic growth in Kenya and other sub-Saharan African countries that implemented similar, early control measures. However, negative and inequitable impacts on economic and food security may mean control measures are not sustainable in the longer term.


Subject(s)
Communicable Disease Control , Coronavirus Infections , Disease Transmission, Infectious/prevention & control , Interpersonal Relations , Pandemics , Pneumonia, Viral , Adult , Betacoronavirus , COVID-19 , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Communicable Disease Control/statistics & numerical data , Coronavirus Infections/economics , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Female , Humans , Kenya/epidemiology , Male , Outcome Assessment, Health Care , Pandemics/economics , Pandemics/prevention & control , Pneumonia, Viral/economics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Poverty/statistics & numerical data , SARS-CoV-2 , Social Isolation , Socioeconomic Factors , Surveys and Questionnaires
8.
BMC Med ; 18(1): 259, 2020 08 19.
Article in English | MEDLINE | ID: covidwho-721300

ABSTRACT

BACKGROUND: To contain the spread of COVID-19, a cordon sanitaire was put in place in Wuhan prior to the Lunar New Year, on 23 January 2020. We assess the efficacy of the cordon sanitaire to delay the introduction and onset of local transmission of COVID-19 in other major cities in mainland China. METHODS: We estimated the number of infected travellers from Wuhan to other major cities in mainland China from November 2019 to February 2020 using previously estimated COVID-19 prevalence in Wuhan and publicly available mobility data. We focused on Beijing, Chongqing, Hangzhou, and Shenzhen as four representative major cities to identify the potential independent contribution of the cordon sanitaire and holiday travel. To do this, we simulated outbreaks generated by infected arrivals in these destination cities using stochastic branching processes. We also modelled the effect of the cordon sanitaire in combination with reduced transmissibility scenarios to simulate the effect of local non-pharmaceutical interventions. RESULTS: We find that in the four cities, given the potentially high prevalence of COVID-19 in Wuhan between December 2019 and early January 2020, local transmission may have been seeded as early as 1-8 January 2020. By the time the cordon sanitaire was imposed, infections were likely in the thousands. The cordon sanitaire alone did not substantially affect the epidemic progression in these cities, although it may have had some effect in smaller cities. Reduced transmissibility resulted in a notable decrease in the incidence of infection in the four studied cities. CONCLUSIONS: Our results indicate that sustained transmission was likely occurring several weeks prior to the implementation of the cordon sanitaire in four major cities of mainland China and that the observed decrease in incidence was likely attributable to other non-pharmaceutical, transmission-reducing interventions.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Health Policy , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Travel , COVID-19 , China/epidemiology , Cities , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Humans , Incidence , Models, Theoretical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Prevalence , SARS-CoV-2
9.
Nat Med ; 26(8): 1205-1211, 2020 08.
Article in English | MEDLINE | ID: covidwho-602162

ABSTRACT

The COVID-19 pandemic has shown a markedly low proportion of cases among children1-4. Age disparities in observed cases could be explained by children having lower susceptibility to infection, lower propensity to show clinical symptoms or both. We evaluate these possibilities by fitting an age-structured mathematical model to epidemic data from China, Italy, Japan, Singapore, Canada and South Korea. We estimate that susceptibility to infection in individuals under 20 years of age is approximately half that of adults aged over 20 years, and that clinical symptoms manifest in 21% (95% credible interval: 12-31%) of infections in 10- to 19-year-olds, rising to 69% (57-82%) of infections in people aged over 70 years. Accordingly, we find that interventions aimed at children might have a relatively small impact on reducing SARS-CoV-2 transmission, particularly if the transmissibility of subclinical infections is low. Our age-specific clinical fraction and susceptibility estimates have implications for the expected global burden of COVID-19, as a result of demographic differences across settings. In countries with younger population structures-such as many low-income countries-the expected per capita incidence of clinical cases would be lower than in countries with older population structures, although it is likely that comorbidities in low-income countries will also influence disease severity. Without effective control measures, regions with relatively older populations could see disproportionally more cases of COVID-19, particularly in the later stages of an unmitigated epidemic.


Subject(s)
Age Factors , Coronavirus Infections/epidemiology , Epidemics , Models, Theoretical , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Betacoronavirus/pathogenicity , COVID-19 , Child , Comorbidity , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Humans , Pandemics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2 , Young Adult
10.
Am J Trop Med Hyg ; 103(1): 35-37, 2020 07.
Article in English | MEDLINE | ID: covidwho-381891

ABSTRACT

Globally, more than 4 million people have been infected with COVID-19, and more than 300,000 deaths have been reported across 188 countries. Concealment of one's potential exposure to the virus has negative implications for the spread of COVID-19 across the socio-ecological spectrum, including the futility of contact-tracing efforts, exposure of frontline staff, and the spread of COVID-19 in the community. We draw lessons learned from HIV to discuss stigma and the attribution of blame surrounding the phenomenon of concealment of one's potential exposure to COVID-19 using a socio-ecological perspective. This article also illustrates the psychosocial aspect of the disease, and the negative repercussions of concealment of potential exposure on transmission in the community and to front-liners, healthcare resources, and outbreak containment.


Subject(s)
Coronavirus Infections/psychology , Deception , HIV Infections/psychology , Pneumonia, Viral/psychology , Social Stigma , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , HIV Infections/epidemiology , Humans , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , SARS-CoV-2
11.
BMC Med ; 18(1): 124, 2020 05 07.
Article in English | MEDLINE | ID: covidwho-186375

ABSTRACT

BACKGROUND: To mitigate and slow the spread of COVID-19, many countries have adopted unprecedented physical distancing policies, including the UK. We evaluate whether these measures might be sufficient to control the epidemic by estimating their impact on the reproduction number (R0, the average number of secondary cases generated per case). METHODS: We asked a representative sample of UK adults about their contact patterns on the previous day. The questionnaire was conducted online via email recruitment and documents the age and location of contacts and a measure of their intimacy (whether physical contact was made or not). In addition, we asked about adherence to different physical distancing measures. The first surveys were sent on Tuesday, 24 March, 1 day after a "lockdown" was implemented across the UK. We compared measured contact patterns during the "lockdown" to patterns of social contact made during a non-epidemic period. By comparing these, we estimated the change in reproduction number as a consequence of the physical distancing measures imposed. We used a meta-analysis of published estimates to inform our estimates of the reproduction number before interventions were put in place. RESULTS: We found a 74% reduction in the average daily number of contacts observed per participant (from 10.8 to 2.8). This would be sufficient to reduce R0 from 2.6 prior to lockdown to 0.62 (95% confidence interval [CI] 0.37-0.89) after the lockdown, based on all types of contact and 0.37 (95% CI = 0.22-0.53) for physical (skin to skin) contacts only. CONCLUSIONS: The physical distancing measures adopted by the UK public have substantially reduced contact levels and will likely lead to a substantial impact and a decline in cases in the coming weeks. However, this projected decline in incidence will not occur immediately as there are significant delays between infection, the onset of symptomatic disease, and hospitalisation, as well as further delays to these events being reported. Tracking behavioural change can give a more rapid assessment of the impact of physical distancing measures than routine epidemiological surveillance.


Subject(s)
Basic Reproduction Number , Coronavirus Infections , Epidemics/prevention & control , Pandemics , Pneumonia, Viral , Social Isolation , Activities of Daily Living , Adult , Betacoronavirus , COVID-19 , Contact Tracing , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Health Policy , Humans , Incidence , Interpersonal Relations , Models, Theoretical , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Surveys and Questionnaires , United Kingdom/epidemiology
12.
Lancet Public Health ; 5(5): e261-e270, 2020 05.
Article in English | MEDLINE | ID: covidwho-14920

ABSTRACT

BACKGROUND: In December, 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, emerged in Wuhan, China. Since then, the city of Wuhan has taken unprecedented measures in response to the outbreak, including extended school and workplace closures. We aimed to estimate the effects of physical distancing measures on the progression of the COVID-19 epidemic, hoping to provide some insights for the rest of the world. METHODS: To examine how changes in population mixing have affected outbreak progression in Wuhan, we used synthetic location-specific contact patterns in Wuhan and adapted these in the presence of school closures, extended workplace closures, and a reduction in mixing in the general community. Using these matrices and the latest estimates of the epidemiological parameters of the Wuhan outbreak, we simulated the ongoing trajectory of an outbreak in Wuhan using an age-structured susceptible-exposed-infected-removed (SEIR) model for several physical distancing measures. We fitted the latest estimates of epidemic parameters from a transmission model to data on local and internationally exported cases from Wuhan in an age-structured epidemic framework and investigated the age distribution of cases. We also simulated lifting of the control measures by allowing people to return to work in a phased-in way and looked at the effects of returning to work at different stages of the underlying outbreak (at the beginning of March or April). FINDINGS: Our projections show that physical distancing measures were most effective if the staggered return to work was at the beginning of April; this reduced the median number of infections by more than 92% (IQR 66-97) and 24% (13-90) in mid-2020 and end-2020, respectively. There are benefits to sustaining these measures until April in terms of delaying and reducing the height of the peak, median epidemic size at end-2020, and affording health-care systems more time to expand and respond. However, the modelled effects of physical distancing measures vary by the duration of infectiousness and the role school children have in the epidemic. INTERPRETATION: Restrictions on activities in Wuhan, if maintained until April, would probably help to delay the epidemic peak. Our projections suggest that premature and sudden lifting of interventions could lead to an earlier secondary peak, which could be flattened by relaxing the interventions gradually. However, there are limitations to our analysis, including large uncertainties around estimates of R0 and the duration of infectiousness. FUNDING: Bill & Melinda Gates Foundation, National Institute for Health Research, Wellcome Trust, and Health Data Research UK.


Subject(s)
Communicable Disease Control , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Epidemics/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , COVID-19 , China/epidemiology , Humans , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL