Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Clin Infect Dis ; 73(7): e1870-e1877, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455249

ABSTRACT

BACKGROUND: We evaluated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface and air contamination during the coronavirus disease 2019 (COVID-19) pandemic in London. METHODS: Prospective, cross-sectional, observational study in a multisite London hospital. Air and surface samples were collected from 7 clinical areas occupied by patients with COVID-19 and a public area of the hospital. Three or four 1.0-m3 air samples were collected in each area using an active air sampler. Surface samples were collected by swabbing items in the immediate vicinity of each air sample. SARS-CoV-2 was detected using reverse-transcription quantitative polymerase chain reaction (PCR) and viral culture; the limit of detection for culturing SARS-CoV-2 from surfaces was determined. RESULTS: Viral RNA was detected on 114 of 218 (52.3%) surfaces and in 14 of 31 (38.7%) air samples, but no virus was cultured. Viral RNA was more likely to be found in areas immediately occupied by COVID-19 patients than in other areas (67 of 105 [63.8%] vs 29 of 64 [45.3%]; odds ratio, 0.5; 95% confidence interval, 0.2-0.9; P = .025, χ2 test). The high PCR cycle threshold value for all samples (>30) indicated that the virus would not be culturable. CONCLUSIONS: Our findings of extensive viral RNA contamination of surfaces and air across a range of acute healthcare settings in the absence of cultured virus underlines the potential risk from environmental contamination in managing COVID-19 and the need for effective use of personal protective equipment, physical distancing, and hand/surface hygiene.


Subject(s)
COVID-19 , SARS-CoV-2 , Cross-Sectional Studies , Delivery of Health Care , Humans , London/epidemiology , Pandemics , Prospective Studies
3.
Clin Infect Dis ; 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1447581

ABSTRACT

BACKGROUND: We examined the epidemiology of community- and hospital-acquired bloodstream infections (BSIs) in COVID-19 and non-COVID-19 patients across two epidemic waves. METHODS: We analysed blood cultures of patients presenting and admitted to a London hospital group between January 2020 and February 2021. We reported BSI incidence, as well as changes in sampling, case mix, healthcare capacity, and COVID-19 variants. RESULTS: 34,044 blood cultures were taken. We identified 1,047 BSIs; 653 (62.4%) community-acquired and 394 (37.6%) hospital-acquired. Important changes in patterns were seen. Among community-acquired BSIs, Escherichia coli BSIs remained lower than pre-pandemic level during COVID-19 waves, however peaked following lockdown easing in May 2020, deviating from the historical trend of peaking in August. The hospital-acquired BSI rate was 100.4 per 100,000 patient-days across the pandemic, increasing to 132.3 during the first wave and 190.9 during the second, with significant increase seen in elective inpatients. Patients who developed a hospital-acquired BSI, including those without COVID-19, experienced 20.2 excess days of hospital stay and 26.7% higher mortality, higher than reported in pre-pandemic literature. In intensive care, the BSI rate was 421.0 per 100,000 patient-ICU days during the second wave, compared to 101.3 pre-COVID. The BSI incidence in those infected with the SARS-CoV-2 Alpha variant was similar to that seen with earlier variants. CONCLUSIONS: The pandemic and national responses have impacted the patterns of community- and hospital-acquired BSIs, in COVID-19 and non-COVID-19 patients. Factors driving the observed patterns are complex. Infection surveillance needs to consider key aspects of pandemic response and changes in healthcare access and practice.

4.
J Infect ; 83(6): 693-700, 2021 12.
Article in English | MEDLINE | ID: covidwho-1446866

ABSTRACT

OBJECTIVES: Recently emerging SARS-CoV-2 variants have been associated with an increased rate of transmission within the community. We sought to determine whether this also resulted in increased transmission within hospitals. METHODS: We collected viral sequences and epidemiological data of patients with community and healthcare associated SARS-CoV-2 infections, sampled from 16th November 2020 to 10th January 2021, from nine hospitals participating in the COG-UK HOCI study. Outbreaks were identified using ward information, lineage and pairwise genetic differences between viral sequences. RESULTS: Mixed effects logistic regression analysis of 4184 sequences showed healthcare-acquired infections were no more likely to be identified as the Alpha variant than community acquired infections. Nosocomial outbreaks were investigated based on overlapping ward stay and SARS-CoV-2 genome sequence similarity. There was no significant difference in the number of patients involved in outbreaks caused by the Alpha variant compared to outbreaks caused by other lineages. CONCLUSIONS: We find no evidence to support it causing more nosocomial transmission than previous lineages. This suggests that the stringent infection prevention measures already in place in UK hospitals contained the spread of the Alpha variant as effectively as other less transmissible lineages, providing reassurance of their efficacy against emerging variants of concern.


Subject(s)
COVID-19 , Cross Infection , Cross Infection/epidemiology , Hospitals , Humans , SARS-CoV-2 , United Kingdom/epidemiology
5.
Cardiol Res Pract ; 2021: 5565200, 2021.
Article in English | MEDLINE | ID: covidwho-1346102

ABSTRACT

BACKGROUND: Infective endocarditis (IE) is challenging to manage in the COVID-19 lockdown period, in part given its reliance on echocardiography for diagnosis and management and the associated virus transmission risks to patients and healthcare workers. This study assesses utilisation of the endocarditis team (ET) in limiting routine echocardiography, especially transoesophageal echocardiography (TOE), in patients with suspected IE, and explores the effect on clinical outcomes. METHODS: All patients discussed at the ET meeting at Imperial College Healthcare NHS Trust during the first lockdown in the UK (23 March to 8 July 2020) were prospectively included and analysed in this observational study. RESULTS: In total, 38 patients were referred for ET review (71% male, median age 54 [interquartile range 48, 65.5] years). At the time of ET discussion, 21% had no echo imaging, 16% had point-of-care ultrasound only, and 63% had formal TTE. In total, only 16% underwent TOE. The ability of echocardiography, in those where it was performed, to affect IE diagnosis according to the Modified Duke Criteria was significant (p=0.0099); however, sensitivity was not affected. All-cause mortality was 17% at 30 days and 25% at 12 months from ET discussion in those with confirmed IE. CONCLUSION: Limiting echocardiography in patients with a low pretest probability (not probable or definite IE according to the Modified Duke Criteria) did not affect the diagnostic ability of the Modified Duke Criteria to rule out IE in this small study. Moreover, restricting nonessential echocardiography, and importantly TOE, in patients with suspected IE through use of the ET did not impact all-cause mortality.

6.
Clin. Infect. Dis. ; 20200708.
Article in English | WHO COVID, ELSEVIER | ID: covidwho-635471

ABSTRACT

BACKGROUND: Evaluation of SARS-CoV-2 surface and air contamination during the COVID-19 pandemic in London. METHODS: We performed this prospective cross-sectional observational study in a multi-site London hospital. Air and surface samples were collected from seven clinical areas, occupied by patients with COVID-19, and a public area of the hospital. Three or four 1.0 m3 air samples were collected in each area using an active air sampler. Surface samples were collected by swabbing items in the immediate vicinity of each air sample. SARS-CoV-2 was detected by RT-qPCR and viral culture; the limit of detection for culturing SARS-CoV-2 from surfaces was determined. RESULTS: Viral RNA was detected on 114/218 (52.3%) of surfaces and 14/31 (38.7%) air samples but no virus was cultured. The proportion of surface samples contaminated with viral RNA varied by item sampled and by clinical area. Viral RNA was detected on surfaces and in air in public areas of the hospital but was more likely to be found in areas immediately occupied by COVID-19 patients than in other areas (67/105 (63.8%) vs. 29/64 (45.3%) (odds ratio 0.5, 95% confidence interval 0.2-0.9, p=0.025, Chi squared test)). The high PCR Ct value for all samples (>30) indicated that the virus would not be culturable. CONCLUSIONS: Our findings of extensive viral RNA contamination of surfaces and air across a range of acute healthcare settings in the absence of cultured virus underlines the potential risk from environmental contamination in managing COVID-19, and the need for effective use of PPE, physical distancing, and hand/surface hygiene.

SELECTION OF CITATIONS
SEARCH DETAIL