Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329760


Importance Growing evidence suggests that coronavirus disease 2019 (COVID-19) is associated with neurological sequelae. However, the underlying pathophysiological mechanisms resulting in central nervous system (CNS) derogation remain unclear. Objective To identify severity-dependent immune mechanisms in the cerebrospinal fluid (CSF) and plasma of COVID-19 patients and their association with brain imaging alterations. Design Prospective cross-sectional cohort study. Setting This study was performed from August 2020 to April 2021. Participants were enrolled in the outpatient clinics, hospital wards and intensive care units (ICU) of two clinical sites in Basel and Zurich, Switzerland. Participants Age >18 years and a positive SARS-CoV-2 test result were inclusion criteria. Potentially matching individuals were identified (n=310), of which 269 declined to participate and 1 did not match inclusion criteria. Paired CSF and plasma samples, as well as brain images, were acquired. The COVID-19 cohort (n=40;mean [SD] age, 54 [20] years;17 women (42%)) was prospectively assorted by neurological symptom severity (classes I, II and III). Age/sex-matched inflammatory (n=25) and healthy (n=25) CSF and plasma control samples were obtained. For volumetric brain analysis, a healthy age/sex-matched control cohort (n=36) was established. Exposures Lumbar puncture, blood sampling and cranial MRI and/or CT. Main outcomes and measures Proteomics, standard parameters and antibody profiling of paired CSF and plasma samples in COVID-19 patients and controls. Brain imaging and gray matter volumetric analysis in association with biomarker profiles. Follow-up after 10-months. Results COVID-19 patients displayed a plasma cytokine storm but a non-inflammatory CSF profile. Class III patients displayed signs of blood-brain barrier (BBB) impairment and a polyclonal B cell response targeting self- and non-self antigens. Decreased regional brain volumes were present in COVID-19 patients and associated with specific CSF and plasma parameters. Conclusion and relevance Neuro-COVID class III patients had a strong, peripheral immune response resulting in (1) BBB impairment (2) ingress of (auto-)antibodies, (3) microglia activation and neuronal damage signatures. Our data point towards several potentially actionable targets that may be addressed to prevent COVID-19-related neurological sequelae. Trial registration The trial ( NCT04472013 ) was registered on Key points Question Does a severity-dependent pattern of immune mechanisms exist in the cerebrospinal fluid (CSF) and plasma of COVID-19 patients and are these associated with clinical and brain imaging findings? Findings Neuro-COVID patients display a robust class III-specific peripheral immune response resulting in (1) blood-brain barrier (BBB) impairment, (2) ingress of (auto-)antibodies, (3) microglia activation and neuronal damage signatures. Integration of MRIs, brain volumetry and proteomics identified biomarkers associated with regional brain volume loss in severe Neuro-COVID. Meaning We provide a multidimensional framework of mechanisms associated with severe Neuro-COVID and present possible targets to prevent COVID-19-related neurological sequelae.

Preprint in English | EuropePMC | ID: ppcovidwho-327654


Increasing evidence shows that the brain is a target of SARS-CoV-2. However, the consequences of the virus on the cortical regions of hospitalized patients are currently unknown. The purpose of this study was to assess brain cortical gray matter volume (GMV), thickness (Th), and surface area (SA) characteristics in SARS-CoV-2 hospitalized patients with a wide range of neurological symptoms and their association with clinical indicators of inflammatory processes. A total of 33 patients were selected from a prospective, multicenter, cross-sectional study during the ongoing pandemic (August 2020-April 2021) at Basel University Hospital. Retrospectively biobank healthy controls with the same image protocol served as controls group. For each anatomical T1w MPRAGE image, the Th and GMV segmentation were performed with the FreeSurfer-5.0. Cortical measures were compared between groups using a linear regression model. The covariates were age, gender, age*gender, MRI magnetic field strength, and total intracranial volume/mean Th/Total SA. The association between cortical features and laboratory variables was assessed using partial correlation adjusting for the same covariates. P-values were adjusted using false discovery rate (FDR). Our findings revealed a lower cortical gray matter volume in orbitofrontal and cingulate regions in patients compared to controls. The orbitofrontal grey matter volume was negatively associated with protein levels, CSF-blood/albumin ratio and CSF EN-RAGE level. CSF EN-RAGE and CSF/Blood-albumin ratio, which are neuroinflammatory biomarkers, were associated with cortical alterations in gray matter volume and thickness in frontal, orbitofrontal, and temporal regions. Our data suggest that viral-triggered inflammation leads to increased neurotoxic damage in some cortical areas.

Int J Stroke ; 16(5): 573-584, 2021 07.
Article in English | MEDLINE | ID: covidwho-1156042


BACKGROUND: The COVID-19 pandemic led to profound changes in the organization of health care systems worldwide. AIMS: We sought to measure the global impact of the COVID-19 pandemic on the volumes for mechanical thrombectomy, stroke, and intracranial hemorrhage hospitalizations over a three-month period at the height of the pandemic (1 March-31 May 2020) compared with two control three-month periods (immediately preceding and one year prior). METHODS: Retrospective, observational, international study, across 6 continents, 40 countries, and 187 comprehensive stroke centers. The diagnoses were identified by their ICD-10 codes and/or classifications in stroke databases at participating centers. RESULTS: The hospitalization volumes for any stroke, intracranial hemorrhage, and mechanical thrombectomy were 26,699, 4002, and 5191 in the three months immediately before versus 21,576, 3540, and 4533 during the first three pandemic months, representing declines of 19.2% (95%CI, -19.7 to -18.7), 11.5% (95%CI, -12.6 to -10.6), and 12.7% (95%CI, -13.6 to -11.8), respectively. The decreases were noted across centers with high, mid, and low COVID-19 hospitalization burden, and also across high, mid, and low volume stroke/mechanical thrombectomy centers. High-volume COVID-19 centers (-20.5%) had greater declines in mechanical thrombectomy volumes than mid- (-10.1%) and low-volume (-8.7%) centers (p < 0.0001). There was a 1.5% stroke rate across 54,366 COVID-19 hospitalizations. SARS-CoV-2 infection was noted in 3.9% (784/20,250) of all stroke admissions. CONCLUSION: The COVID-19 pandemic was associated with a global decline in the volume of overall stroke hospitalizations, mechanical thrombectomy procedures, and intracranial hemorrhage admission volumes. Despite geographic variations, these volume reductions were observed regardless of COVID-19 hospitalization burden and pre-pandemic stroke/mechanical thrombectomy volumes.

COVID-19 , Global Health , Hospitalization/trends , Intracranial Hemorrhages/therapy , Stroke/therapy , Thrombectomy/trends , Cross-Sectional Studies , Hospitals, High-Volume/trends , Hospitals, Low-Volume/trends , Humans , Intracranial Hemorrhages/diagnosis , Intracranial Hemorrhages/epidemiology , Registries , Retrospective Studies , Stroke/diagnosis , Stroke/epidemiology , Time Factors