Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Molecules ; 27(6)2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1732133

ABSTRACT

The wild-type SARS-CoV-2 has continuously evolved into several variants with increased transmissibility and virulence. The Delta variant which was initially identified in India created a devastating impact throughout the country during the second wave. While the efficacy of the existing vaccines against the latest SARS-CoV-2 variants remains unclear, extensive research is being carried out to develop potential antiviral drugs through approaches like in silico screening and drug-repurposing. This study aimed to conduct the docking-based virtual screening of 50 potential phytochemical compounds against a Spike glycoprotein of the wild-type and the Delta SARS-CoV-2 variant. Subsequently, molecular docking was performed for the five best compounds, such as Lupeol, Betulin, Hypericin, Corilagin, and Geraniin, along with synthetic controls. From the results obtained, it was evident that Lupeol exhibited a remarkable binding affinity towards the wild-type Spike protein (-8.54 kcal/mol), while Betulin showed significant binding interactions with the mutated Spike protein (-8.83 kcal/mol), respectively. The binding energy values of the selected plant compounds were slightly higher than that of the controls. Key hydrogen bonding and hydrophobic interactions of the resulting complexes were visualized, which explained their greater binding affinity against the target proteins-the Delta S protein of SARS-CoV-2, in particular. The lower RMSD, the RMSF values of the complexes and the ligands, Rg, H-bonds, and the binding free energies of the complexes together revealed the stability of the complexes and significant binding affinities of the ligands towards the target proteins. Our study suggests that Lupeol and Betulin could be considered as potential ligands for SARS-CoV-2 spike antagonists. Further experimental validations might provide new insights for the possible antiviral therapeutic interventions of the identified lead compounds and their analogs against COVID-19 infection.


Subject(s)
Antiviral Agents , COVID-19 , Antiviral Agents/pharmacology , COVID-19/drug therapy , Humans , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
2.
Healthcare (Basel) ; 9(1)2021 Jan 05.
Article in English | MEDLINE | ID: covidwho-1011456

ABSTRACT

In response to the coronavirus disease 2019 (COVID-19), Saudi Arabia have imposed timely restrictions to minimize the infection spread, lower the risk for vulnerable groups, and reduce the pressure on healthcare services. The effectiveness of these measures has not been assessed comprehensively and, thereby, remains uncertain. Besides monitoring the number of COVID-19 cases diagnosed by molecular assays, the seroprevalence can serve as an indicator for the incidence rate among the general population. This study aimed to evaluate seroprevalence status of all healthy blood donors who attended one of the main largest hospital located in the western region of Saudi Arabia from 1 January to 31 May 2020. The study period covered two months prior to reporting the first COVID-19 case in the country on 2 March 2020. Importantly, it covered the period when "lock-down type" measures have been enforced. Samples were subjected to in-house enzyme-linked immunosorbent assay (ELISA), chemiluminescence immunoassay (CLIA), and microneutralization (MN). The sero statuses of all samples were confirmed negative, demonstrating the lack of antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among blood donors during COVID-19 lockdown period. This study supports the hypothesis that COVID-19 restrictions have potential for limiting the extent of the infection.

SELECTION OF CITATIONS
SEARCH DETAIL