Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Proc Natl Acad Sci U S A ; 120(18): e2301775120, 2023 05 02.
Article in English | MEDLINE | ID: covidwho-2305928

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global health concern, and effective antiviral reagents are urgently needed. Traditional Chinese medicine theory-driven natural drug research and development (TCMT-NDRD) is a feasible method to address this issue as the traditional Chinese medicine formulae have been shown effective in the treatment of COVID-19. Huashi Baidu decoction (Q-14) is a clinically approved formula for COVID-19 therapy with antiviral and anti-inflammatory effects. Here, an integrative pharmacological strategy was applied to identify the antiviral and anti-inflammatory bioactive compounds from Q-14. Overall, a total of 343 chemical compounds were initially characterized, and 60 prototype compounds in Q-14 were subsequently traced in plasma using ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. Among the 60 compounds, six compounds (magnolol, glycyrrhisoflavone, licoisoflavone A, emodin, echinatin, and quercetin) were identified showing a dose-dependent inhibition effect on the SARS-CoV-2 infection, including two inhibitors (echinatin and quercetin) of the main protease (Mpro), as well as two inhibitors (glycyrrhisoflavone and licoisoflavone A) of the RNA-dependent RNA polymerase (RdRp). Meanwhile, three anti-inflammatory components, including licochalcone B, echinatin, and glycyrrhisoflavone, were identified in a SARS-CoV-2-infected inflammatory cell model. In addition, glycyrrhisoflavone and licoisoflavone A also displayed strong inhibitory activities against cAMP-specific 3',5'-cyclic phosphodiesterase 4 (PDE4). Crystal structures of PDE4 in complex with glycyrrhisoflavone or licoisoflavone A were determined at resolutions of 1.54 Å and 1.65 Å, respectively, and both compounds bind in the active site of PDE4 with similar interactions. These findings will greatly stimulate the study of TCMT-NDRD against COVID-19.


Subject(s)
COVID-19 , Humans , Antiviral Agents/pharmacology , SARS-CoV-2 , Quercetin/pharmacology , Anti-Inflammatory Agents/pharmacology , Molecular Docking Simulation
2.
Animal Model Exp Med ; 4(1): 2-15, 2021 03.
Article in English | MEDLINE | ID: covidwho-2270129

ABSTRACT

Background: Cardiovascular diseases (CVDs) and diabetes mellitus (DM) are top two chronic comorbidities that increase the severity and mortality of COVID-19. However, how SARS-CoV-2 alters the progression of chronic diseases remain unclear. Methods: We used adenovirus to deliver h-ACE2 to lung to enable SARS-CoV-2 infection in mice. SARS-CoV-2's impacts on pathogenesis of chronic diseases were studied through histopathological, virologic and molecular biology analysis. Results: Pre-existing CVDs resulted in viral invasion, ROS elevation and activation of apoptosis pathways contribute myocardial injury during SARS-CoV-2 infection. Viral infection increased fasting blood glucose and reduced insulin response in DM model. Bone mineral density decreased shortly after infection, which associated with impaired PI3K/AKT/mTOR signaling. Conclusion: We established mouse models mimicked the complex pathological symptoms of COVID-19 patients with chronic diseases. Pre-existing diseases could impair the inflammatory responses to SARS-CoV-2 infection, which further aggravated the pre-existing diseases. This work provided valuable information to better understand the interplay between the primary diseases and SARS-CoV-2 infection.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Cardiovascular Diseases/complications , Cardiovascular Diseases/physiopathology , Diabetes Complications/physiopathology , Animals , Comorbidity , Diabetes Mellitus , Disease Models, Animal , Male , Mice , SARS-CoV-2
3.
Animal Model Exp Med ; 3(1): 93-97, 2020 Mar.
Article in English | MEDLINE | ID: covidwho-2288057

ABSTRACT

BACKGROUND: Since December 2019, an outbreak of the Corona Virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) in Wuhan, China, has become a public health emergency of international concern. The high fatality of aged cases caused by SARS-CoV-2 was a need to explore the possible age-related phenomena with non-human primate models. METHODS: Three 3-5 years old and two 15 years old rhesus macaques were intratracheally infected with SARS-CoV-2, and then analyzed by clinical signs, viral replication, chest X-ray, histopathological changes and immune response. RESULTS: Viral replication of nasopharyngeal swabs, anal swabs and lung in old monkeys was more active than that in young monkeys for 14 days after SARS-CoV-2 challenge. Monkeys developed typical interstitial pneumonia characterized by thickened alveolar septum accompanied with inflammation and edema, notably, old monkeys exhibited diffuse severe interstitial pneumonia. Viral antigens were detected mainly in alveolar epithelial cells and macrophages. CONCLUSION: SARS-CoV-2 caused more severe interstitial pneumonia in old monkeys than that in young monkeys. Rhesus macaque models infected with SARS-CoV-2 provided insight into the pathogenic mechanism and facilitated the development of vaccines and therapeutics against SARS-CoV-2 infection.

4.
Animal Model Exp Med ; 3(4): 316-318, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-2270020

ABSTRACT

This study was designed to investigate the sensitivity of SARS-CoV-2 to different temperatures, to provide basic data and a scientific basis for the control of COVID-19 epidemic. The virus was dispersed in 1 mL basal DMEM medium at a final concentration of 103.2 TCID50/mL and then incubated at 4, 22, 30, 35, 37, 38, 39 and 40°C for up to 5 days. The infectivity of residual virus was titrated using the Vero E6 cell line. The results showed that the virus remained viable for 5 days at 4°C, and for 1 day only at 22 and 30°C. We found that the infectivity of the virus was completely lost after less than 12 hours at 37, 38 and 39°C, while at 40°C, the inactivation time of the virus was rapidly reduced to 6 hours. We show that SARS-CoV-2 is sensitive to heat, is more stable at lower temperatures than higher temperature, remains viable for longer at lower temperatures, and loses viability rapidly at higher temperatures.

5.
Animal Model Exp Med ; 5(1): 89-93, 2022 02.
Article in English | MEDLINE | ID: covidwho-2270021

ABSTRACT

BACKGROUND: The Omicron (B.1.1.529) SARS-COV-2 variant has raised serious concerns because of its unprecedented rapid rate of spreading and the fact that there are 36 mutations in the spike protein. Since the vaccine-induced neutralizing antibody targets are the spike protein, this may lead to the possibility of vaccine-induced humoral immunity escape. METHODS: We measured the neutralizing activity in vitro for Omicron and compared this with wild type (WH-09) and Delta variants in human and monkey sera from different types of immunity. The monkey sera samples were collected at 1 and 3 months post three-dose inactivated (PiCoVacc) and recombinant protein (ZF2001) vaccination. Human sera were collected from 1 month post three-dose inactivated vaccination. RESULTS: In inactivated vaccine sera, at 1/3 months post three-dose, geometric mean titers (GMTs) of neutralization antibody (NAb) against the Omicron variant were 4.9/5.2-fold lower than those of the wild type. In recombinant protein vaccine sera, GMTs of NAb against Omicron were 15.7/8.9-fold lower than those of the wild type. In human sera, at 1 month post three-dose inactivated vaccination, GMTs of NAb against Omicron were 3.1-fold lower than those of the wild type. CONCLUSION: This study demonstrated that despite a reduction in neutralization titers, cross-neutralizing activity against Omicron and Delta variants was still observed after three doses of inactivated and recombinant protein vaccination.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19 , Cross Reactions , SARS-CoV-2 , Animals , Antibodies, Neutralizing/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Haplorhini , Humans , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics
6.
Animal Model Exp Med ; 6(1): 51-56, 2023 02.
Article in English | MEDLINE | ID: covidwho-2288696

ABSTRACT

BACKGROUND: New Omicron subvariants are emerging rapidly from BA.1 to BA.4 and BA.5. Their pathogenicity has changed from that of wild-type (WH-09) and Omicron variants have over time become globally dominant. The spike proteins of BA.4 and BA.5 that serve as the target for vaccine-induced neutralizing antibodies have also changed compared to the previous subvariants, which is likely to cause immune escape and the reduction of the protective effect of the vaccine. Our study addresses the above issues and provides a basis for formulating relevant prevention and control strategies. METHODS: We collected cellular supernatant and cell lysates and measured the viral titers, viral RNA loads, and E subgenomic RNA (E sgRNA) loads in different Omicron subvariants grown in Vero E6 cells, using WH-09 and Delta variants as a reference. Additionally, we evaluated the in vitro neutralizing activity of different Omicron subvariants and compared it to the WH-09 and Delta variants using macaque sera with different types of immunity. RESULTS: As the SARS-CoV-2 evolved into Omicron BA.1, the replication ability in vitro began to decrease. Then with the emergence of new subvariants, the replication ability gradually recovered and became stable in the BA.4 and BA.5 subvariants. In WH-09-inactivated vaccine sera, geometric mean titers of neutralization antibodies against different Omicron subvariants declined by 3.7~15.4-fold compared to those against WH-09. In Delta-inactivated vaccine sera, geometric mean titers of neutralization antibodies against Omicron subvariants declined by 3.1~7.4-fold compared to those against Delta. CONCLUSION: According to the findings of this research, the replication efficiency of all Omicron subvariants declined compared with WH-09 and Delta variants, and was lower in BA.1 than in other Omicron subvariants. After two doses of inactivated (WH-09 or Delta) vaccine, cross-neutralizing activities against various Omicron subvariants were seen despite a decline in neutralizing titers.


Subject(s)
Antibodies, Neutralizing , COVID-19 , SARS-CoV-2 , Virus Replication , Animals , COVID-19/virology , Macaca , SARS-CoV-2/physiology , Subgenomic RNA
7.
Animal Model Exp Med ; 5(5): 401-409, 2022 10.
Article in English | MEDLINE | ID: covidwho-2084982

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), the most consequential pandemic of this century, threatening human health and public safety. SARS-CoV-2 has been continuously evolving through mutation of its genome and variants of concern have emerged. The World Health Organization R&D Blueprint plan convened a range of expert groups to develop animal models for COVID-19, a core requirement for the prevention and control of SARS-CoV-2 pandemic. The animal model construction techniques developed during the SARS-CoV and MERS-CoV pandemics were rapidly deployed and applied in the establishment of COVID-19 animal models. To date, a large number of animal models for COVID-19, including mice, hamsters, minks and nonhuman primates, have been established. Infectious diseases produce unique manifestations according to the characteristics of the pathogen and modes of infection. Here we classified animal model resources around the infection route of SARS-CoV-2, and summarized the characteristics of the animal models constructed via transnasal, localized, and simulated transmission routes of infection.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Cricetinae , Animals , Humans , Mice , SARS-CoV-2 , Pandemics , Middle East Respiratory Syndrome Coronavirus/genetics , Models, Animal
8.
Signal Transduct Target Ther ; 7(1): 124, 2022 04 18.
Article in English | MEDLINE | ID: covidwho-1795804

ABSTRACT

Variants of concern (VOCs) like Delta and Omicron, harbor a high number of mutations, which aid these viruses in escaping a majority of known SARS-CoV-2 neutralizing antibodies (NAbs). In this study, Rhesus macaques immunized with 2-dose inactivated vaccines (Coronavac) were boosted with an additional dose of homologous vaccine or an RBD-subunit vaccine, or a bivalent inactivated vaccine (Beta and Delta) to determine the effectiveness of sequential immunization. The booster vaccination significantly enhanced the duration and levels of neutralizing antibody titers against wild-type, Beta, Delta, and Omicron. Animals administered with an indicated booster dose and subsequently challenged with Delta or Omicron variants showed markedly reduced viral loads and improved histopathological profiles compared to control animals, indicating that sequential immunization could protect primates against Omicron. These results suggest that sequential immunization of inactivated vaccines or polyvalent vaccines could be a potentially effective countermeasure against newly emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Macaca mulatta , SARS-CoV-2/genetics , Vaccination , Vaccines, Inactivated/genetics
9.
Protein Cell ; 13(12): 920-939, 2022 12.
Article in English | MEDLINE | ID: covidwho-1773029

ABSTRACT

SARS-CoV-2 infection causes complicated clinical manifestations with variable multi-organ injuries, however, the underlying mechanism, in particular immune responses in different organs, remains elusive. In this study, comprehensive transcriptomic alterations of 14 tissues from rhesus macaque infected with SARS-CoV-2 were analyzed. Compared to normal controls, SARS-CoV-2 infection resulted in dysregulation of genes involving diverse functions in various examined tissues/organs, with drastic transcriptomic changes in cerebral cortex and right ventricle. Intriguingly, cerebral cortex exhibited a hyperinflammatory state evidenced by significant upregulation of inflammation response-related genes. Meanwhile, expressions of coagulation, angiogenesis and fibrosis factors were also up-regulated in cerebral cortex. Based on our findings, neuropilin 1 (NRP1), a receptor of SARS-CoV-2, was significantly elevated in cerebral cortex post infection, accompanied by active immune response releasing inflammatory factors and signal transmission among tissues, which enhanced infection of the central nervous system (CNS) in a positive feedback way, leading to viral encephalitis. Overall, our study depicts a multi-tissue/organ transcriptomic landscapes of rhesus macaque with early infection of SARS-CoV-2, and provides important insights into the mechanistic basis for COVID-19-associated clinical complications.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/genetics , Macaca mulatta , SARS-CoV-2/genetics , Transcriptome
10.
Signal Transduct Target Ther ; 7(1): 29, 2022 01 28.
Article in English | MEDLINE | ID: covidwho-1655546

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted on mink farms between minks and humans in many countries. However, the systemic pathological features of SARS-CoV-2-infected minks are mostly unknown. Here, we demonstrated that minks were largely permissive to SARS-CoV-2, characterized by severe and diffuse alveolar damage, and lasted at least 14 days post inoculation (dpi). We first reported that infected minks displayed multiple organ-system lesions accompanied by an increased inflammatory response and widespread viral distribution in the cardiovascular, hepatobiliary, urinary, endocrine, digestive, and immune systems. The viral protein partially co-localized with activated Mac-2+ macrophages throughout the body. Moreover, we first found that the alterations in lipids and metabolites were correlated with the histological lesions in infected minks, especially at 6 dpi, and were similar to that of patients with severe and fatal COVID-19. Particularly, altered metabolic pathways, abnormal digestion, and absorption of vitamins, lipids, cholesterol, steroids, amino acids, and proteins, consistent with hepatic dysfunction, highlight metabolic and immune dysregulation. Enriched kynurenine in infected minks contributed to significant activation of the kynurenine pathway and was related to macrophage activation. Melatonin, which has significant anti-inflammatory and immunomodulating effects, was significantly downregulated at 6 dpi and displayed potential as a targeted medicine. Our data first illustrate systematic analyses of infected minks to recapitulate those observations in severe and fetal COVID-19 patients, delineating a useful animal model to mimic SARS-CoV-2-induced systematic and severe pathophysiological features and provide a reliable tool for the development of effective and targeted treatment strategies, vaccine research, and potential biomarkers.


Subject(s)
COVID-19/metabolism , Lung/metabolism , Macrophages, Alveolar/metabolism , Metabolome , Mink/virology , SARS-CoV-2/metabolism , Amino Acids/metabolism , Animals , Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/pathology , Disease Models, Animal , Female , Humans , Lung/pathology , Lung/virology , Macrophages, Alveolar/pathology , Macrophages, Alveolar/virology , Melatonin/metabolism , Metabolic Networks and Pathways/genetics , Molecular Targeted Therapy/methods , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Sterols/metabolism , Virulence , Virus Replication/genetics , COVID-19 Drug Treatment
11.
Signal Transduct Target Ther ; 6(1): 200, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1237988

ABSTRACT

Influenza A virus may circulate simultaneously with the SARS-CoV-2 virus, leading to more serious respiratory diseases during this winter. However, the influence of these viruses on disease outcome when both influenza A and SARS-CoV-2 are present in the host remains unclear. Using a mammalian model, sequential infection was performed in ferrets and in K18-hACE2 mice, with SARS-CoV-2 infection following H1N1. We found that co-infection with H1N1 and SARS-CoV-2 extended the duration of clinical manifestation of COVID-19, and enhanced pulmonary damage, but reduced viral shedding of throat swabs and viral loads in the lungs of ferrets. Moreover, mortality was increased in sequentially infected mice compared with single-infection mice. Compared with single-vaccine inoculation, co-inoculation of PiCoVacc (a SARS-CoV-2 vaccine) and the flu vaccine showed no significant differences in neutralizing antibody titers or virus-specific immune responses. Combined immunization effectively protected K18-hACE2 mice against both H1N1 and SARS-CoV-2 infection. Our findings indicated the development of systematic models of co-infection of H1N1 and SARS-CoV-2, which together notably enhanced pneumonia in ferrets and mice, as well as demonstrated that simultaneous vaccination against H1N1 and SARS-CoV-2 may be an effective prevention strategy for the coming winter.


Subject(s)
COVID-19 , Coinfection , Influenza A Virus, H1N1 Subtype/immunology , Orthomyxoviridae Infections , SARS-CoV-2/immunology , Animals , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Coinfection/immunology , Coinfection/pathology , Coinfection/virology , Disease Models, Animal , Ferrets , Humans , Male , Mice , Mice, Transgenic , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology
12.
J Infect Dis ; 223(8): 1313-1321, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-1091239

ABSTRACT

Domestic cats, an important companion animal, can be infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This has aroused concern regarding the ability of domestic cats to spread the virus that causes coronavirus disease 2019. We systematically demonstrated the pathogenesis and transmissibility of SARS-CoV-2 in cats. Serial passaging of the virus between cats dramatically attenuated the viral transmissibility, likely owing to variations of the amino acids in the receptor-binding domain sites of angiotensin-converting enzyme 2 between humans and cats. These findings provide insight into the transmissibility of SARS-CoV-2 in cats and information for protecting the health of humans and cats.


Subject(s)
COVID-19/transmission , COVID-19/veterinary , SARS-CoV-2/pathogenicity , Amino Acids/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , Cats , Cell Line , Chlorocebus aethiops , Female , Humans , Male , Vero Cells
13.
Front Microbiol ; 11: 618891, 2020.
Article in English | MEDLINE | ID: covidwho-1054989

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread across the world and impacted global healthcare systems. For clinical patients, COVID-19 not only induces pulmonary lesions but also affects extrapulmonary organs. An ideal animal model that mimics COVID-19 in humans in terms of the induced systematic lesions is urgently needed. Here, we report that Syrian hamster is highly permissive to SARS-CoV-2 and exhibit diffuse alveolar damage and induced extrapulmonary multi-organs damage, including spleen, lymph nodes, different segments of alimentary tract, kidney, adrenal gland, ovary, vesicular gland and prostate damage, at 3-7 days post inoculation (dpi), based on qRT-PCR, in situ hybridization and immunohistochemistry detection. Notably, the adrenal gland is a novel target organ, with abundant viral RNA and antigen expression detected, accompanied by focal to diffuse inflammation. Additionally, viral RNA was also detected in the corpus luteum of the ovary, vesicular gland and prostate. Focal lesions in liver, gallbladder, myocardium, and lymph nodes were still present at 18 dpi, suggesting potential damage after disease. Our findings illustrate systemic histological observations and the viral RNA and antigen distribution in infected hamsters during disease and convalescence to recapitulate those observed in humans with COVID-19, providing helpful data to the pathophysiologic characterization of SARS-CoV-2-induced systemic disease and the development of effective treatment strategies.

14.
Cell ; 183(4): 1013-1023.e13, 2020 11 12.
Article in English | MEDLINE | ID: covidwho-756810

ABSTRACT

Understanding how potent neutralizing antibodies (NAbs) inhibit SARS-CoV-2 is critical for effective therapeutic development. We previously described BD-368-2, a SARS-CoV-2 NAb with high potency; however, its neutralization mechanism is largely unknown. Here, we report the 3.5-Å cryo-EM structure of BD-368-2/trimeric-spike complex, revealing that BD-368-2 fully blocks ACE2 recognition by occupying all three receptor-binding domains (RBDs) simultaneously, regardless of their "up" or "down" conformations. Also, BD-368-2 treats infected adult hamsters at low dosages and at various administering windows, in contrast to placebo hamsters that manifested severe interstitial pneumonia. Moreover, BD-368-2's epitope completely avoids the common binding site of VH3-53/VH3-66 recurrent NAbs, evidenced by tripartite co-crystal structures with RBDs. Pairing BD-368-2 with a potent recurrent NAb neutralizes SARS-CoV-2 pseudovirus at pM level and rescues mutation-induced neutralization escapes. Together, our results rationalized a new RBD epitope that leads to high neutralization potency and demonstrated BD-368-2's therapeutic potential in treating COVID-19.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/therapeutic use , Antigen-Antibody Reactions , Binding Sites , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cricetinae , Cryoelectron Microscopy , Disease Models, Animal , Epitopes/chemistry , Epitopes/immunology , Female , Lung/pathology , Male , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protein Structure, Quaternary , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
15.
Nat Commun ; 11(1): 4400, 2020 09 02.
Article in English | MEDLINE | ID: covidwho-744370

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmitted through the respiratory route, but potential extra-respiratory routes of SARS-CoV-2 transmission remain uncertain. Here we inoculated five rhesus macaques with 1 × 106 TCID50 of SARS-CoV-2 conjunctivally (CJ), intratracheally (IT), and intragastrically (IG). Nasal and throat swabs collected from CJ and IT had detectable viral RNA at 1-7 days post-inoculation (dpi). Viral RNA was detected in anal swabs from only the IT group at 1-7 dpi. Viral RNA was undetectable in tested swabs and tissues after intragastric inoculation. The CJ infected animal had a higher viral load in the nasolacrimal system than the IT infected animal but also showed mild interstitial pneumonia, suggesting distinct virus distributions. This study shows that infection via the conjunctival route is possible in non-human primates; further studies are necessary to compare the relative risk and pathogenesis of infection through these different routes in more detail.


Subject(s)
Betacoronavirus/physiology , Conjunctiva/virology , Coronavirus Infections/virology , Disease Models, Animal , Pneumonia, Viral/virology , Animals , Antibodies, Viral , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/pathology , Intestine, Large/virology , Lung/pathology , Lung/virology , Macaca mulatta , Male , Nasal Cavity/virology , Pandemics , Pneumonia, Viral/pathology , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2 , Trachea/virology , Viral Load , Virus Replication
16.
J Infect Dis ; 222(4): 551-555, 2020 07 23.
Article in English | MEDLINE | ID: covidwho-704462

ABSTRACT

We simulated 3 transmission modes, including close-contact, respiratory droplets and aerosol routes, in the laboratory. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be highly transmitted among naive human angiotensin-converting enzyme 2 (hACE2) mice via close contact because 7 of 13 naive hACE2 mice were SARS-CoV-2 antibody seropositive 14 days after being introduced into the same cage with 3 infected-hACE2 mice. For respiratory droplets, SARS-CoV-2 antibodies from 3 of 10 naive hACE2 mice showed seropositivity 14 days after introduction into the same cage with 3 infected-hACE2 mice, separated by grids. In addition, hACE2 mice cannot be experimentally infected via aerosol inoculation until continued up to 25 minutes with high viral concentrations.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Aerosols , Anal Canal/virology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/blood , Betacoronavirus/genetics , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , COVID-19 , Chlorocebus aethiops , Female , Humans , Immunoglobulin G/blood , Lung/pathology , Lung/virology , Male , Mice , Mice, Transgenic , Pandemics , Peptidyl-Dipeptidase A/genetics , Pharynx/virology , RNA, Viral/isolation & purification , Respiratory System/virology , Risk , SARS-CoV-2 , Specific Pathogen-Free Organisms , Time Factors , Vero Cells , Viral Load , Weight Loss
17.
Science ; 369(6505): 818-823, 2020 08 14.
Article in English | MEDLINE | ID: covidwho-631755

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic. It is unclear whether convalescing patients have a risk of reinfection. We generated a rhesus macaque model of SARS-CoV-2 infection that was characterized by interstitial pneumonia and systemic viral dissemination mainly in the respiratory and gastrointestinal tracts. Rhesus macaques reinfected with the identical SARS-CoV-2 strain during the early recovery phase of the initial SARS-CoV-2 infection did not show detectable viral dissemination, clinical manifestations of viral disease, or histopathological changes. Comparing the humoral and cellular immunity between primary infection and rechallenge revealed notably enhanced neutralizing antibody and immune responses. Our results suggest that primary SARS-CoV-2 exposure protects against subsequent reinfection in rhesus macaques.


Subject(s)
Betacoronavirus , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Anal Canal/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , B-Lymphocyte Subsets/immunology , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Disease Models, Animal , Host Microbial Interactions , Immunity, Cellular , Immunity, Humoral , Lung/diagnostic imaging , Lung/immunology , Lung/pathology , Lung/virology , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/virology , Macaca mulatta , Nasopharynx/virology , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Recurrence , SARS-CoV-2 , T-Lymphocyte Subsets/immunology , Viral Load , Virus Replication
18.
Biomed Pharmacother ; 128: 110316, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-436600

ABSTRACT

BACKGROUND: Pudilan (PDL), a four-herb prescription with the traditional function of heat-clearing and detoxifying, has been clinically used as an anti-SARS-CoV-2 infectory agent in China. PDL might also have therapeutic potentials for COVID-19 while the underlying mechanisms remain to be clarified. METHODS: We used network pharmacology analysis and selected 68 co-targeted genes/proteins as targets of both PDL and COVID-19. These co-targeted genes/proteins were predicted by SwissDock Server for their high-precision docking simulation, and analyzed by STRING for proteins to protein interaction (PPI), pathway and GO (gene ontology) enrichment. The therapeutic effect for PDL treatment on COVID-19 was validated by the TCMATCOV (TCM Anti COVID-19) platform. RESULTS: PDL might prevent the entrance of SARS-CoV-2 entry into cells by blocking the angiotensin-converting enzyme 2 (ACE2). It might inhibit the cytokine storm by affecting C-reactive protein (CRP), interferon-γ (IFN-γ), interleukin- 6 (IL-6), interleukin- 10 (IL-10), tumor necrosis factor (TNF), epidermal growth factor receptor (EGFR), C-C motif chemokine ligand 5 (CCL5), transforming growth factor-ß1 (TGFß1), and other proteins. PDL might moderate the immune system to shorten the course of the disease, delay disease progression, and reduce the mortality rate. CONCLUSION: PDL might have a therapeutic effect on COVID-19 through three aspects, including the moderate immune system, anti-inflammation, and anti-virus entry into cells.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus , Coronavirus Infections , Cytokine Release Syndrome , Drugs, Chinese Herbal/pharmacology , Pandemics , Pneumonia, Viral , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Anti-Inflammatory Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Humans , Immunologic Factors/pharmacology , Interferon-gamma/immunology , Interleukins/immunology , Molecular Docking Simulation , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Protein Interaction Maps , SARS-CoV-2 , Transforming Growth Factor beta/immunology
19.
Nature ; 583(7818): 830-833, 2020 07.
Article in English | MEDLINE | ID: covidwho-220333

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), which has become a public health emergency of international concern1. Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for severe acute respiratory syndrome coronavirus (SARS-CoV)2. Here we infected transgenic mice that express human ACE2 (hereafter, hACE2 mice) with SARS-CoV-2 and studied the pathogenicity of the virus. We observed weight loss as well as virus replication in the lungs of hACE2 mice infected with SARS-CoV-2. The typical histopathology was interstitial pneumonia with infiltration of considerable numbers of macrophages and lymphocytes into the alveolar interstitium, and the accumulation of macrophages in alveolar cavities. We observed viral antigens in bronchial epithelial cells, macrophages and alveolar epithelia. These phenomena were not found in wild-type mice infected with SARS-CoV-2. Notably, we have confirmed the pathogenicity of SARS-CoV-2 in hACE2 mice. This mouse model of SARS-CoV-2 infection will be valuable for evaluating antiviral therapeutic agents and vaccines, as well as understanding the pathogenesis of COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Coronavirus Infections/virology , Lung/pathology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Transgenes , Angiotensin-Converting Enzyme 2 , Animals , Antigens, Viral/immunology , Antigens, Viral/metabolism , Betacoronavirus/immunology , Betacoronavirus/metabolism , Bronchi/pathology , Bronchi/virology , COVID-19 , Coronavirus Infections/immunology , Disease Models, Animal , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Humans , Immunoglobulin G/immunology , Lung/immunology , Lung/virology , Lymphocytes/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , Male , Mice , Mice, Transgenic , Pandemics , Pneumonia, Viral/immunology , Receptors, Complement 3d/genetics , Receptors, Complement 3d/metabolism , SARS-CoV-2 , Virus Replication , Weight Loss
20.
Cell Res ; 30(4): 343-355, 2020 Apr.
Article in English | MEDLINE | ID: covidwho-30393

ABSTRACT

The recent outbreak of coronavirus disease (COVID-19) caused by SARS-CoV-2 infection in Wuhan, China has posed a serious threat to global public health. To develop specific anti-coronavirus therapeutics and prophylactics, the molecular mechanism that underlies viral infection must first be defined. Therefore, we herein established a SARS-CoV-2 spike (S) protein-mediated cell-cell fusion assay and found that SARS-CoV-2 showed a superior plasma membrane fusion capacity compared to that of SARS-CoV. We solved the X-ray crystal structure of six-helical bundle (6-HB) core of the HR1 and HR2 domains in the SARS-CoV-2 S protein S2 subunit, revealing that several mutated amino acid residues in the HR1 domain may be associated with enhanced interactions with the HR2 domain. We previously developed a pan-coronavirus fusion inhibitor, EK1, which targeted the HR1 domain and could inhibit infection by divergent human coronaviruses tested, including SARS-CoV and MERS-CoV. Here we generated a series of lipopeptides derived from EK1 and found that EK1C4 was the most potent fusion inhibitor against SARS-CoV-2 S protein-mediated membrane fusion and pseudovirus infection with IC50s of 1.3 and 15.8 nM, about 241- and 149-fold more potent than the original EK1 peptide, respectively. EK1C4 was also highly effective against membrane fusion and infection of other human coronavirus pseudoviruses tested, including SARS-CoV and MERS-CoV, as well as SARSr-CoVs, and potently inhibited the replication of 5 live human coronaviruses examined, including SARS-CoV-2. Intranasal application of EK1C4 before or after challenge with HCoV-OC43 protected mice from infection, suggesting that EK1C4 could be used for prevention and treatment of infection by the currently circulating SARS-CoV-2 and other emerging SARSr-CoVs.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/prevention & control , Lipopeptides/pharmacology , Membrane Fusion , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Administration, Intranasal , Amino Acid Sequence , Animals , Betacoronavirus/drug effects , COVID-19 , Cell Fusion , Chlorocebus aethiops , HEK293 Cells , Humans , Mice , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Sequence Alignment , Structure-Activity Relationship , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL