Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Nat Microbiol ; 7(5): 716-725, 2022 May.
Article in English | MEDLINE | ID: covidwho-1852420


Emerging SARS-CoV-2 variants continue to cause waves of new infections globally. Developing effective antivirals against SARS-CoV-2 and its variants is an urgent task. The main protease (Mpro) of SARS-CoV-2 is an attractive drug target because of its central role in viral replication and its conservation among variants. We herein report a series of potent α-ketoamide-containing Mpro inhibitors obtained using the Ugi four-component reaction. The prioritized compound, Y180, showed an IC50 of 8.1 nM against SARS-CoV-2 Mpro and had oral bioavailability of 92.9%, 31.9% and 85.7% in mice, rats and dogs, respectively. Y180 protected against wild-type SARS-CoV-2, B.1.1.7 (Alpha), B.1.617.1 (Kappa) and P.3 (Theta), with EC50 of 11.4, 20.3, 34.4 and 23.7 nM, respectively. Oral treatment with Y180 displayed a remarkable antiviral potency and substantially ameliorated the virus-induced tissue damage in both nasal turbinate and lung of B.1.1.7-infected K18-human ACE2 (K18-hACE2) transgenic mice. Therapeutic treatment with Y180 improved the survival of mice from 0 to 44.4% (P = 0.0086) upon B.1.617.1 infection in the lethal infection model. Importantly, Y180 was also highly effective against the B.1.1.529 (Omicron) variant both in vitro and in vivo. Overall, our study provides a promising lead compound for oral drug development against SARS-CoV-2.

COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Disease Models, Animal , Dogs , Humans , Mice , Rats
Science ; 371(6536): 1374-1378, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1255508


The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continually poses serious threats to global public health. The main protease (Mpro) of SARS-CoV-2 plays a central role in viral replication. We designed and synthesized 32 new bicycloproline-containing Mpro inhibitors derived from either boceprevir or telaprevir, both of which are approved antivirals. All compounds inhibited SARS-CoV-2 Mpro activity in vitro, with 50% inhibitory concentration values ranging from 7.6 to 748.5 nM. The cocrystal structure of Mpro in complex with MI-23, one of the most potent compounds, revealed its interaction mode. Two compounds (MI-09 and MI-30) showed excellent antiviral activity in cell-based assays. In a transgenic mouse model of SARS-CoV-2 infection, oral or intraperitoneal treatment with MI-09 or MI-30 significantly reduced lung viral loads and lung lesions. Both also displayed good pharmacokinetic properties and safety in rats.

Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/pathology , COVID-19/virology , Cell Line , Cell Survival/drug effects , Chemokine CXCL10/metabolism , Disease Models, Animal , Drug Design , Humans , Interferon-beta/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Oligopeptides , Proline/analogs & derivatives , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , Protease Inhibitors/toxicity , Rats , Rats, Sprague-Dawley , Viral Load/drug effects , Virus Replication