ABSTRACT
Background: Rapid and efficient strategies are needed to discover neutralizing antibodies (nAbs) from B cells derived from virus-infected patients. Methods: Here, we report a high-throughput single-B-cell cloning method for high-throughput isolation of nAbs targeting diverse epitopes on the SARS-CoV-2-RBD (receptor binding domain) from convalescent COVID-19 patients. This method is simple, fast and highly efficient in generating SARS-CoV-2-neutralizing antibodies from COVID-19 patients' B cells. Results: Using this method, we have developed multiple nAbs against distinct SARS-CoV-2-RBD epitopes. CryoEM and crystallography revealed precisely how they bind RBD. In live virus assay, these nAbs are effective in blocking viral entry to the host cells. Conclusion: This simple and efficient method may be useful in developing human therapeutic antibodies for other diseases and next pandemic.
ABSTRACT
The re-emerging mpox (formerly monkeypox) virus (MPXV), a member of Orthopoxvirus genus together with variola virus (VARV) and vaccinia virus (VACV), has led to public health emergency of international concern since July 2022. Inspired by the unprecedent success of coronavirus disease 2019 (COVID-19) mRNA vaccines, the development of a safe and effective mRNA vaccine against MPXV is of high priority. Based on our established lipid nanoparticle (LNP)-encapsulated mRNA vaccine platform, we rationally constructed and prepared a panel of multicomponent MPXV vaccine candidates encoding different combinations of viral antigens including M1R, E8L, A29L, A35R, and B6R. In vitro and in vivo characterization demonstrated that two immunizations of all mRNA vaccine candidates elicit a robust antibody response as well as antigen-specific Th1-biased cellular response in mice. Importantly, the penta- and tetra-component vaccine candidates AR-MPXV5 and AR-MPXV4a showed superior capability of inducing neutralizing antibodies as well as of protecting from VACV challenge in mice. Our study provides critical insights to understand the protection mechanism of MPXV infection and direct evidence supporting further clinical development of these multicomponent mRNA vaccine candidates.
Subject(s)
COVID-19 , Monkeypox , Animals , Mice , COVID-19/prevention & control , Vaccines, Synthetic/genetics , Vaccinia virus/genetics , Monkeypox virus , COVID-19 Vaccines , Antibodies, ViralABSTRACT
Infectious virus diseases, particularly coronavirus disease 2019, have posed a severe threat to public health, whereas the developed therapeutic and prophylactic strategies are seriously challenged by viral evolution and mutation. Therefore, broad-spectrum inhibitors of viruses are highly demanded. Herein, an unprecedented antiviral strategy is reported, targeting the viral glycan shields with hypervalent mannose-binding nanoparticles. The nanoparticles exhibit a unique double-punch mechanism, being capable of not only blocking the virus-receptor interaction but also inducing viral aggregation, thereby allowing for inhibiting the virus entry and facilitating the phagocytosis of viruses. The nanoparticles exhibit potent and broad-spectrum antiviral efficacy to multiple pseudoviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its major variants (D614G, N501Y, N439K, Δ69-70, Delta, and Omicron; lentiviruses expressing only the spike proteins), as well as other vital viruses (human immunodeficiency virus 1 and Lassa virus), with apparent EC50 values around the 10-9 m level. Significantly, the broad-spectrum inhibition of authentic viruses of both wild-type SARS-CoV-2 and Delta variants is confirmed. Therefore, this hypervalent glycan-shield targeting strategy opens new access to broad-spectrum viral inhibition.
ABSTRACT
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the global coronavirus disease 2019 (COVID-19) pandemic, contains a unique, four amino acid (aa) "PRRA" insertion in the spike (S) protein that creates a transmembrane protease serine 2 (TMPRSS2)/furin cleavage site and enhances viral infectivity. More research into immunogenic epitopes and protective antibodies against this SARS-CoV-2 furin cleavage site is needed. METHODS: Combining computational and experimental methods, we identified and characterized an immunogenic epitope overlapping the furin cleavage site that detects antibodies in COVID-19 patients and elicits strong antibody responses in immunized mice. We also identified a high-affinity monoclonal antibody from COVID-19 patient peripheral blood mononuclear cells; the antibody directly binds the furin cleavage site and protects against SARS-CoV-2 infection in a mouse model. FINDINGS: The presence of "PRRA" amino acids in the S protein of SARS-CoV-2 not only creates a furin cleavage site but also generates an immunogenic epitope that elicits an antibody response in COVID-19 patients. An antibody against this epitope protected against SARS-CoV-2 infection in mice. INTERPRETATION: The immunogenic epitope and protective antibody we have identified may augment our strategy in handling COVID-19 epidemic. FUNDING: The National Natural Science Foundation of China (82102371, 91542201, 81925025, 82073181, and 81802870), the Chinese Academy of Medical Sciences Initiative for Innovative Medicine (2021-I2M-1-047 and 2022-I2M-2-004), the Non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences (2020-PT310-006, 2019XK310002, and 2018TX31001), the National Key Research and Development Project of China (2020YFC0841700), US National Institute of Health (NIH) funds grant AI158154, University of California Los Angeles (UCLA) AI and Charity Treks, and UCLA DGSOM BSCRC COVID-19 Award Program. H.Y. is supported by Natural Science Foundation of Jiangsu Province (BK20211554 andBE2022728).
Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , SARS-CoV-2/metabolism , Furin/chemistry , Furin/metabolism , Antibody Formation , Epitopes , Leukocytes, Mononuclear/metabolism , AntibodiesABSTRACT
SARS-CoV-2 variants have posed significant challenges to the hopes of using ancestral strain-based vaccines to address the risk of breakthrough infection by variants. We designed and developed a bivalent vaccine based on SARS-CoV-2 Alpha and Beta variants (named SCTV01C). SCTV01C antigens were stable at 25 oC for at least 6 months. In the presence of a squalene-based oil-in-water adjuvant SCT-VA02B, SCTV01C showed significant protection efficacy against antigen-matched Beta variant, with favorable safety profiles in rodents. Notably, SCTV01C exhibited cross-neutralization capacity against Omicron subvariants (BA.1, BA.1.1, BA.2, BA.3, and BA.4/5) in mice, superior to a WT (D614G)-based vaccine, which reinforced our previously published findings that SCTV01C exhibited broad-spectrum neutralizing potencies against over a dozen pre-Omicron variants and the Omicron BA.1 variant. In summary, variant-based multivalent protein vaccine could be a platform approach to address the challenging issues of emerging variants, vaccine hesitancy and the needs of affordable and thermal stable vaccines.
Subject(s)
COVID-19 , Viral Vaccines , Mice , Humans , Animals , SARS-CoV-2/genetics , Vaccines, Combined , Viral Vaccines/genetics , Squalene , COVID-19/prevention & control , Antibodies, Viral , Water , Antibodies, NeutralizingABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies are shown to be effective therapeutics for providing coronavirus disease 2019 (COVID-19) protection. However, recurrent variants arise and facilitate significant escape from current antibody therapeutics. Bispecific antibodies (bsAbs) represent a unique platform to increase antibody breadth and to reduce neutralization escape. Herein, a novel immunoglobulin G-variable domains of heavy-chain-only antibody (IgG-VHH) format bsAb derived from a potent human antibody R15-F7 and a humanized nanobody P14-F8-35 are rationally engineered. The resulting bsAb SYZJ001 efficiently neutralizes wild-type SARS-CoV-2 as well as the alpha, beta, gamma, and delta variants, with superior efficacy to its parental antibodies. Cryo-electron microscopy structural analysis reveals that R15-F7 and P14-F8-35 bind to nonoverlapping epitopes within the RBD and sterically hindered ACE2 receptor binding. Most importantly, SYZJ001 shows potent prophylactic and therapeutic efficacy against SARS-CoV-2 in three established mouse models. Collectively, the current results demonstrate that the novel bsAb format is feasible and effective, suggesting great potential as an inspiring antiviral strategy.
ABSTRACT
BACKGROUND: Viral antigen detection test is the most common method used to detect viruses in the field rapidly. However, due to the low sensitivity, it can only be used as an auxiliary diagnosis method for virus infection. Improving sensitivity is crucial for developing more accurate viral antigen tests. Nano luciferase (Nluc) is a sensitive reporter that has not been used in virus detection. RESULTS: In this study, we produced an intracellularly Nluc labeled detection antibody (Nluc-ch2C5) and evaluated its ability to improve the detection sensitivity of respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens. Compared with the traditional horse-radish peroxidase (HRP) labeled antibody (HRP-ch2C5), Nluc-ch2C5 was 41 times more sensitive for inactivated SARS-CoV-2 virus by sandwich chemiluminescence ELISA. Then we applied Nluc-ch2C5 to establish an automatic magnet chemiluminescence immune assay (AMCA) for the SARS-CoV-2 viral spike protein, the limit of detection was 68 pfu/reaction. The clinical sensitivity and specificity reached 75% (24/32) and 100% (48/48) using 32 PCR-positive and 48 PCR-negative swab samples for clinical evaluation, which is more sensitive than the commercial ELSA kit and colloid gold strip kit. CONCLUSIONS: Here, monoclonal antibody ch2C5 served as a model antibody and the SARS-CoV-2 served as a model pathogen. The Nluc labeled detecting antibody (Nluc-ch2C5) significantly improved the detection sensitivity of SARS-CoV-2 antigen. This labeling principle applies to other viral infections, so this labeling and test format could be expected to play an important role in detecting other virus antigens.
Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral/analysis , COVID-19/diagnosis , COVID-19 Testing , Humans , Luciferases/genetics , Sensitivity and SpecificityABSTRACT
SARS-CoV-2 variants have posed significant challenges to the hopes of using ancestral strain-based vaccines to address the risk of breakthrough infection by variants. We designed and developed a bivalent vaccine based on SARS-CoV-2 Alpha and Beta variants (named SCTV01C). SCTV01C antigens were stable at 25 oC for at least 6 months. In the presence of a squalene-based oil-in-water adjuvant SCT-VA02B, SCTV01C showed significant protection efficacy against antigen-matched Beta variant, with favorable safety profiles in rodents. Notably, SCTV01C exhibited cross-neutralization capacity against Omicron subvariants (BA.1, BA.1.1, BA.2, BA.3, and BA.4/5) in mice, superior to a WT (D614G)-based vaccine, which reinforced our previously published findings that SCTV01C exhibited broad-spectrum neutralizing potencies against over a dozen pre-Omicron variants and the Omicron BA.1 variant. In summary, variant-based multivalent protein vaccine could be a platform approach to address the challenging issues of emerging variants, vaccine hesitancy and the needs of affordable and thermal stable vaccines.
ABSTRACT
The SARS-CoV-2 pandemic has become a severe global public health event, and the development of protective and therapeutic strategies is urgently needed. Downregulation of angiotensin converting enzyme 2 (ACE2; one of the important SARS-CoV-2 entry receptors) and aberrant inflammatory responses (cytokine storm) are the main targets to inhibit and control COVID-19 invasion. Silver nanomaterials have well-known pharmaceutical properties, including antiviral, antibacterial, and anticancer properties. Here, based on a self-established metal evaporation-condensation-size graded collection system, smaller silver particles reaching the Ångstrom scale (AgÅPs) were fabricated and coated with fructose to obtain a stabilized AgÅP solution (F-AgÅPs). F-AgÅPs potently inactivated SARS-CoV-2 and prevented viral infection. Considering the application of anti-SARS-CoV-2, a sterilized F-AgÅP solution was produced via spray formulation. In our model, the F-AgÅP spray downregulated ACE2 expression and attenuated proinflammatory factors. Moreover, F-AgÅPs were found to be rapidly eliminated to avoid respiratory and systemic toxicity in this study as well as our previous studies. This work presents a safe and potent anti-SARS-CoV-2 agent using an F-AgÅP spray.
Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Humans , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Silver/pharmacologyABSTRACT
Messenger RNA (mRNA, mRNA) vaccines and antibodies are a new type of vaccine and antibody technology emerging in recent years. Compared with traditional vaccines, mRNA vaccines have the advantages of high safety, good balanced immunity, short development cycle, and low production costs. mRNA antibodies exert biological effects in vivo earlier and longer than other forms of delivered antibodies. With the rapid development of mRNA modification and delivery technology, mRNA technology is rapidly maturing, showing broad application prospects in tumor treatment, prevention and treatment of viral infectious diseases, etc. In particular, the new coronavirus mRNA vaccine has been completed at a record speed The development and successful application paves the way for the promotion of mRNA technology in the future. This paper reviews the important breakthroughs in the field of mRNA technology, focusing on the major progress of mRNA vaccines and antibodies in response to viral infectious diseases, and looks forward to the future research trends of this technology in the field of anti-viral infection.
ABSTRACT
As the world continues to experience the COVID-19 pandemic, seasonal influenza remain a cause of severe morbidity and mortality globally. Worse yet, coinfection with SARS-CoV-2 and influenza A virus (IAV) leads to more severe clinical outcomes. The development of a combined vaccine against both COVID-19 and influenza is thus of high priority. Based on our established lipid nanoparticle (LNP)-encapsulated mRNA vaccine platform, we developed and characterized a novel mRNA vaccine encoding the HA antigen of influenza A (H1N1) virus, termed ARIAV. Then, ARIAV was combined with our COVID-19 mRNA vaccine ARCoV, which encodes the receptor-binding domain (RBD) of the SARS-CoV-2 S protein, to formulate the final combined vaccine, AR-CoV/IAV. Further characterization demonstrated that immunization with two doses of AR-CoV/IAV elicited robust protective antibodies as well as antigen-specific cellular immune responses against SARS-CoV-2 and IAV. More importantly, AR-CoV/IAV immunization protected mice from coinfection with IAV and the SARS-CoV-2 Alpha and Delta variants. Our results highlight the potential of the LNP-mRNA vaccine platform in preventing COVID-19 and influenza, as well as other respiratory diseases.
ABSTRACT
Viral antigen detection test is the most common method used to detect viruses in the field rapidly. However, due to the low sensitivity, it can only be used as an auxiliary diagnosis method for virus infection. Improving sensitivity is crucial for developing more accurate viral antigen tests. Nano luciferase (Nluc) is a sensitive reporter that has not been used in virus detection. In this study, we produced an intracellularly Nluc labeled detection antibody (Nluc-ch2C5) and evaluated its ability to improve the detection sensitivity of respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens. Compared with the traditional horse-radish peroxidase (HRP) labeled antibody (HRP-ch2C5), Nluc-ch2C5 was 41 times more sensitive for inactivated SARS-CoV-2 virus by sandwich chemiluminescence ELISA. Then we applied Nluc-ch2C5 to establish an automatic magnet chemiluminescence immune assay (AMCA) for the SARS-CoV-2 viral spike protein, the limit of detection was 68 pfu/reaction. The clinical sensitivity and specificity reached 75% (24/32) and 100% (48/48) using 32 PCR-positive and 48 PCR-negative swab samples for clinical evaluation, which is more sensitive than the commercial ELSA kit and colloid gold strip kit. Here, monoclonal antibody ch2C5 served as a model antibody and the SARS-CoV-2 served as a model pathogen. The Nluc labeled detecting antibody (Nluc-ch2C5) significantly improved the detection sensitivity of SARS-CoV-2 antigen. This labeling principle applies to other viral infections, so this labeling and test format could be expected to play an important role in detecting other virus antigens.
ABSTRACT
Safe and effective vaccines and therapeutics based on the understanding of antiviral immunity are urgently needed to end the COVID-19 pandemic. However, the understanding of these immune responses, especially cellular immune responses to SARS-CoV-2 infection, is limited. Here, we conducted a cohort study of COVID-19 patients who were followed and had blood collected to characterize the longitudinal dynamics of their cellular immune responses. Compared with healthy controls, the percentage of activation of SARS-CoV-2 S/N-specific T cells in recovered patients was significantly higher. And the activation percentage of S/N-specific CD8+ T cells in recovered patients was significantly higher than that of CD4+ T cells. Notably, SARS-CoV-2 specific T-cell responses were strongly biased toward the expression of Th1 cytokines, included the cytokines IFNγ, TNFα and IL2. Moreover, the secreted IFNγ and IL2 level in severe patients was higher than that in mild patients. Additionally, the number of IFNγ-secreting S-specific T cells in recovered patients were higher than that of N-specific T cells. Overall, the SARS-CoV-2 S/N-specific T-cell responses in recovered patients were strong, and virus-specific immunity was present until 14-16 weeks after symptom onset. Our work provides a basis for understanding the immune responses and pathogenesis of COVID-19. It also has implications for vaccine development and optimization and speeding up the licensing of the next generation of COVID-19 vaccines.
Subject(s)
COVID-19 , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , Cohort Studies , Humans , Immunity, Cellular , Interleukin-2 , Pandemics , SARS-CoV-2ABSTRACT
The global COVID-19 epidemic has spread rapidly around the world and caused the death of more than 5 million people. It is urgent to develop effective strategies to treat COVID-19 patients. Here, we revealed that SARS-CoV-2 infection resulted in the dysregulation of genes associated with NAD+ metabolism, immune response, and cell death in mice, similar to that in COVID-19 patients. We therefore investigated the effect of treatment with NAD+ and its intermediate (NMN) and found that the pneumonia phenotypes, including excessive inflammatory cell infiltration, hemolysis, and embolization in SARS-CoV-2-infected lungs were significantly rescued. Cell death was suppressed substantially by NAD+ and NMN supplementation. More strikingly, NMN supplementation can protect 30% of aged mice infected with the lethal mouse-adapted SARS-CoV-2 from death. Mechanically, we found that NAD+ or NMN supplementation partially rescued the disturbed gene expression and metabolism caused by SARS-CoV-2 infection. Thus, our in vivo mouse study supports trials for treating COVID-19 patients by targeting the NAD+ pathway.
ABSTRACT
ARCoV is a candidate mRNA vaccine encoding receptor-binding domain of SARS-CoV-2. Its safety, tolerability, and immunogenicity profile have been confirmed in the phase 1 clinical trial in China. A multi-regional phase 3 clinical trial is currently underway to test the efficacy of ARCoV (NCT04847102). Here, we tested the cross-neutralization against SARS-CoV-2 variants of concern (VOCs) of a panel of serum samples from participants in the phase 1 clinical trial of ARCoV by pesudo- and authentic SARS-CoV-2. Our data suggest the immunity induced by the ARCoV vaccine reduced but still has significant neutralization against the Alpha and Delta variants. Moreover, ARCoV maintained activity against the Beta variant, despite of its obvious reduction in neutralizing titers. Our findings further support the solid protective neutralization activity against VOCs induced by ARCoV vaccine.
Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , China , Humans , SARS-CoV-2 , Vaccines, Synthetic , mRNA VaccinesSubject(s)
COVID-19 , Chiroptera , Animals , Animals, Wild , Humans , SARS-CoV-2 , Zoonoses/epidemiologyABSTRACT
Nanoparticle Vaccines In article number 2200443, Liangzhi Xie, Chengfeng Qin, and co-workers develop a novel bivalent nanoparticle vaccine that confers protection against infection of multiple SARS-CoV-2 variants and Streptococcus pneumoniae. This universal polysaccharide?protein-conjugated vaccine platform provides a powerful tool to fight against cocirculating viral and bacterial pathogens worldwide.
ABSTRACT
Previous studies have shown that B.1.351 and other variants have extended the host range of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to mice. Sustained transmission is a prerequisite for viral maintenance in a population. However, no evidence of natural transmission of SARS-CoV-2 in wild mice has been documented to date. Here, we evaluated the replication and contact transmission of the B.1.351 variant in mice and rats. The B.1.351 variant could infect and replicate efficiently in the airways of mice and rats. Furthermore, the B.1.351 variant could not be transmitted in BALB/c or C57BL/6 mice but could be transmitted with moderate efficiency in rats by direct contact. Additionally, the B.1.351 variant did not transmit from inoculated Syrian hamsters to BALB/c mice. Moreover, the mouse-adapted SARS-CoV-2 strain C57MA14 did not transmit in mice. In summary, the risk of B.1.351 variant transmission in mice is extremely low, but the transmission risk in rats should not be neglected. We should pay more attention to the potential natural transmission of SARS-CoV-2 variants in rats and their possible spillback to humans.