Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Cell Discov ; 8(1): 86, 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2008267


The ongoing COVID-19 pandemic has continued to affect millions of lives worldwide, leading to the urgent need for novel therapeutic strategies. G-quadruplexes (G4s) have been demonstrated to regulate life cycle of multiple viruses. Here, we identify several highly conservative and stable G4s in SARS-CoV-2 and clarify their dual-function of inhibition of the viral replication and translation processes. Furthermore, the cationic porphyrin compound 5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4) targeting SARS-CoV-2 G4s shows excellent antiviral activity, while its N-methyl-2-pyridyl positional isomer TMPyP2 with low affinity for G4 has no effects on SARS-CoV-2 infection, suggesting that the antiviral activity of TMPyP4 attributes to targeting SARS-CoV-2 G4s. In the Syrian hamster and transgenic mouse models of SARS-CoV-2 infection, administration of TMPyP4 at nontoxic doses significantly suppresses SARS-CoV-2 infection, resulting in reduced viral loads and lung lesions. Worth to note, the anti-COVID-19 activity of TMPyP4 is more potent than remdesivir evidenced by both in vitro and in vivo studies. Our findings highlight SARS-CoV-2 G4s as a novel druggable target and the compelling potential of TMPyP4 for COVID-19 therapy. Different from the existing anti-SARS-CoV-2 therapeutic strategies, our work provides another alternative therapeutic tactic for SARS-CoV-2 infection focusing on targeting the secondary structures within SARS-CoV-2 genome, and would open a new avenue for design and synthesis of drug candidates with high selectivity toward the new targets.

Angew Chem Int Ed Engl ; 60(1): 432-438, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-774564


The COVID-19 pandemic caused by SARS-CoV-2 has become a global threat. Understanding the underlying mechanisms and developing innovative treatments are extremely urgent. G-quadruplexes (G4s) are important noncanonical nucleic acid structures with distinct biofunctions. Four putative G4-forming sequences (PQSs) in the SARS-CoV-2 genome were studied. One of them (RG-1), which locates in the coding sequence region of SARS-CoV-2 nucleocapsid phosphoprotein (N), has been verified to form a stable RNA G4 structure in live cells. G4-specific compounds, such as PDP (pyridostatin derivative), can stabilize RG-1 G4 and significantly reduce the protein levels of SARS-CoV-2 N by inhibiting its translation both in vitro and in vivo. This result is the first evidence that PQSs in SARS-CoV-2 can form G4 structures in live cells, and that their biofunctions can be regulated by a G4-specific stabilizer. This finding will provide new insights into developing novel antiviral drugs against COVID-19.

Antiviral Agents/pharmacology , COVID-19/drug therapy , G-Quadruplexes/drug effects , RNA, Viral/drug effects , SARS-CoV-2/drug effects , Drug Evaluation, Preclinical , Gene Expression Regulation, Viral/drug effects , Genome, Viral , Humans , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/drug effects , Protein Folding , SARS-CoV-2/genetics , Small Molecule Libraries , Temperature