Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
J Magn Reson Imaging ; 54(2): 421-428, 2021 08.
Article in English | MEDLINE | ID: covidwho-1085671


BACKGROUND: Myocardial injury has been found using magnetic resonance imaging in recovered coronavirus disease 2019 (COVID-19) patients unselected or with ongoing cardiac symptoms. PURPOSE: To evaluate for the presence of myocardial involvement in recovered COVID-19 patients without cardiovascular symptoms and abnormal serologic markers during hospitalization. STUDY TYPE: Prospective. POPULATION: Twenty-one recovered COVID-19 patients and 20 healthy controls (HC). FIELD STRENGTH/SEQUENCE: 3.0 T, cine, T2-weighted imaging, T1 mapping, and T2 mapping. ASSESSMENT: Cardiac ventricular function includes end-diastolic volume, end-systolic volume, stroke volume, cardiac output, left ventricle (LV) mass, and ejection fraction (EF) of LV and right ventricle (RV), and segmental myocardial T1 and T2 values were measured. STATISTICAL TESTS: Student's t-test, univariate general linear model test, and chi-square test were used for analyses between two groups. Ordinary one-way analyses of variance or Kruskal-Wallis H test were used for analyses between three groups, followed by post-hoc analyses. RESULTS: Fifteen (71.43%) COVID-19 patients had abnormal magnetic resonance findings, including raised myocardial native T1 (5, 23.81%) and T2 values (10, 47.62%), decreased LVEF (1, 4.76%), and RVEF (2, 9.52%). The segmental myocardial T2 value of COVID-19 patients (49.20 [46.1, 54.6] msec) was significantly higher than HC (48.3 [45.2, 51.7] msec) (P < 0.001), while the myocardial native T1 value showed no significant difference between COVID-19 patients and HC. The myocardial T2 value of serious COVID-19 patients (52.5 [48.1, 57.1] msec) was significantly higher than unserious COVID-19 patients (48.8 [45.9, 53.8] msec) and HC (48.3 [45.2, 51.7]) (P < 0.001). COVID-19 patients with abnormally elevated D-dimer, C-reactive protein, or lymphopenia showed higher myocardial T2 values than without (all P < 0.05). DATA CONCLUSION: Cardiac involvement was observed in recovered COVID-19 patients with no preexisting cardiovascular disease, no cardiovascular symptoms, and elevated serologic markers of myocardial injury during the whole course of COVID-19. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 5.

COVID-19 , Heart , Humans , Magnetic Resonance Imaging, Cine , Myocardium , Predictive Value of Tests , Prospective Studies , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left
Clin Imaging ; 78: 223-229, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1077833


PURPOSE: To evaluate whether the extent of COVID-19 pneumonia on CT scans using quantitative CT imaging obtained early in the illness can predict its future severity. METHODS: We conducted a retrospective single-center study on confirmed COVID-19 patients between January 18, 2020 and March 5, 2020. A quantitative AI algorithm was used to evaluate each patient's CT scan to determine the proportion of the lungs with pneumonia (VR) and the rate of change (RAR) in VR from scan to scan. Patients were classified as being in the severe or non-severe group based on their final symptoms. Penalized B-splines regression modeling was used to examine the relationship between mean VR and days from onset of symptoms in the two groups, with 95% and 99% confidence intervals. RESULTS: Median VR max was 18.6% (IQR 9.1-32.7%) in 21 patients in the severe group, significantly higher (P < 0.0001) than in the 53 patients in non-severe group (1.8% (IQR 0.4-5.7%)). RAR was increasing with a median RAR of 2.1% (IQR 0.4-5.5%) in severe and 0.4% (IQR 0.1-0.9%) in non-severe group, which was significantly different (P < 0.0001). Penalized B-spline analyses showed positive relationships between VR and days from onset of symptom. The 95% confidence limits of the predicted means for the two groups diverged 5 days after the onset of initial symptoms with a threshold of 11.9%. CONCLUSION: Five days after the initial onset of symptoms, CT could predict the patients who later developed severe symptoms with 95% confidence.

COVID-19 , Humans , Lung , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
Eur Radiol ; 30(8): 4407-4416, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-15134


OBJECTIVES: To explore the relationship between the imaging manifestations and clinical classification of COVID-19. METHODS: We conducted a retrospective single-center study on patients with COVID-19 from Jan. 18, 2020 to Feb. 7, 2020 in Zhuhai, China. Patients were divided into 3 types based on Chinese guideline: mild (patients with minimal symptoms and negative CT findings), common, and severe-critical (patients with positive CT findings and different extent of clinical manifestations). CT visual quantitative evaluation was based on summing up the acute lung inflammatory lesions involving each lobe, which was scored as 0 (0%), 1 (1-25%), 2 (26-50%), 3 (51-75%), or 4 (76-100%), respectively. The total severity score (TSS) was reached by summing the five lobe scores. The consistency of two observers was evaluated. The TSS was compared with the clinical classification. ROC was used to test the diagnosis ability of TSS for severe-critical type. RESULTS: This study included 78 patients, 38 males and 40 females. There were 24 mild (30.8%), 46 common (59.0%), and 8 severe-critical (10.2%) cases, respectively. The median TSS of severe-critical-type group was significantly higher than common type (p < 0.001). The ICC value of the two observers was 0.976 (95% CI 0.962-0.985). ROC analysis showed the area under the curve (AUC) of TSS for diagnosing severe-critical type was 0.918. The TSS cutoff of 7.5 had 82.6% sensitivity and 100% specificity. CONCLUSIONS: The proportion of clinical mild-type patients with COVID-19 was relatively high; CT was not suitable for independent screening tool. The CT visual quantitative analysis has high consistency and can reflect the clinical classification of COVID-19. KEY POINTS: • CT visual quantitative evaluation has high consistency (ICC value of 0.976) among the observers. The median TSS of severe-critical type group was significantly higher than common type (p < 0.001). • ROC analysis showed the area under the curve (AUC) of TSS for diagnosing severe-critical type was 0.918 (95% CI 0.843-0.994). The TSS cutoff of 7.5 had 82.6% sensitivity and 100% specificity. • The proportion of confirmed COVID-19 patients with normal chest CT was relatively high (30.8%); CT was not a suitable screening modality.

Betacoronavirus , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Adult , Aged , Aged, 80 and over , Area Under Curve , COVID-19 , Female , Humans , Male , Middle Aged , Pandemics , ROC Curve , Retrospective Studies , SARS-CoV-2 , Thorax , Tomography, X-Ray Computed/methods , Vision, Ocular