Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
2.
J Med Virol ; 94(8): 3982-3987, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1802454

ABSTRACT

There is a potential risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread through human contact with seafood and the inanimate materials contaminated by the virus. In this study, we examined the stability of the virus in artificial seawater (ASW) and on the surface of selected materials. SARS-CoV-2 (3.75 log10 TCID50 ) in ASW at 22℃ maintained infectious about 3 days and at 4℃ the virus survived more than 7 days. It should be noticed that viable virus at high titer (5.50 log10 TCID50 ) may survive more than 20 days in ASW at 4℃ and for 7 days at 22℃. SARS-CoV-2 on stainless steel and plastic bag maintained infectious for 3 days, and on nonwoven fabric for 1 day at 22℃. In addition, the virus remained infectious for 9 days on stainless steel and non-woven fabric, and on plastic bag for 12 days at 4℃. It is important to highlight the role of inanimate material surfaces as a source of infection and the necessity for surface decontamination and disinfection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Plastics , Seawater , Stainless Steel
4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-315723

ABSTRACT

The pandemic of COVID-19 caused by SARS-CoV-2 has posed serious threats to global health and economy, thus calling for the development of safe and effective vaccines. The receptor-binding domain (RBD) in the spike protein of SARS-CoV-2 is responsible for its binding to ACE2 receptor. It contains multiple dominant neutralizing epitopes and serves as an important antigen for the development of COVID-19 vaccines. Here, we showed that immunization of mice with a candidate subunit vaccine consisting of SARS-CoV-2 RBD and Fc fragment of human IgG, as an immunopotentiator, elicited high titer of RBD-specific antibodies with robust neutralizing activity against both pseudotyped and live SARS-CoV-2 infections. The mouse antisera could also effectively neutralize infection by pseudotyped SARS-CoV-2 with several natural mutations in RBD and the IgG extracted from the mouse antisera could also show neutralization against pseudotyped SARS-CoV and SARS-related coronavirus (SARSr-CoV). Vaccination of human ACE2 transgenic mice with RBD-Fc could effectively protect mice from the SARS-CoV-2 challenge. These results suggest that SARS-CoV-2 RBD-Fc has good potential to be further developed as an effective and broad-spectrum vaccine to prevent infection of the current SARS-CoV-2 and its mutants, as well as future emerging SARSr-CoVs and re-emerging SARS-CoV.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-313429

ABSTRACT

Accumulating mutations on SARS-CoV-2 Spike (S) protein may increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, in a panel of receptor binding domain (S-RBD) specific monoclonal antibodies (mAbs) with high neutralizing potency against authentic SARS-CoV-2, at least 6 of them were found to efficiently block the pseudovirus of 501Y.V2, a highly transmissible SARS-CoV-2 variant with escape mutations. The top 3 neutralizing Abs (13G9, 58G6 and 510A5) exhibited comparative ultrapotency as those being actively pursued for clinical development. Interestingly, the antigenic sites for the majority of our neutralizing Abs overlapped with a single epitope (13G9e) on S-RBD. Further, the 3-dimensional structures of 2 ultrapotent neutralizing Abs 13G9 or 58G6 in complex with SARS-CoV-2 S trimer demonstrated that both Abs bound to a steric region within S 472–490 . Moreover, a specific linear region (S 450–457 ) was identified as an additional target for 58G6. Importantly, our cryo-electron microscopy (cryo-EM) analysis revealed a unique phenomenon that the S-RBDs interacting with the fragments of antigen binding (Fabs) of 13G9 or 58G6 encoded by the IGHV1-58 and the IGKV3-20 gene segments were universally in the ‘up’ conformation in all observed particles. The potent neutralizing Abs presented in the current study may be promising candidates to fulfill the urgent needs for the current pandemic of SARS-CoV-2, and may of fundamental value for the next-generation vaccine development.

6.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-311951

ABSTRACT

After the epidemic of COVID-19, neutralizing antibodies (NAbs) against SARS-CoV-2 has been developed for the preventative and therapeutic purposes. However, few methodologies are reported in detail on how to rapidly and efficiently generate NAbs of interest. Here, we present a strategically optimized screening method for NAbs, which has enabled us to obtain SARS-CoV-2 receptor-binding domain (RBD) specific monoclonal Abs within 4 days, followed by additional 2 days to evaluate their neutralizing activities. Using this method, we obtained 198 specific Abs against SARS-CoV-2 RBD from the blood samples of COVID-19 convalescent patients, and 96 of them showed neutralizing activity. At least 20% of these NAbs exhibited high neutralizing potency. The top 2 NAbs showed the half-maximal inhibitory concentration (IC50) to block authentic SARS-CoV-2 at 9.88 and 11.13 ng/ml, respectively. Altogether, our study provides a fundamental methodology for discovering NAbs with potential preventative and therapeutic value for emerging infectious diseases.

7.
Front Microbiol ; 12: 806902, 2021.
Article in English | MEDLINE | ID: covidwho-1674357

ABSTRACT

Sex differences in immune responses had been reported to correlate with different symptoms and mortality in the disease course of coronavirus disease 2019 (COVID-19). However, whether severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection interferes with females' fertility and causes different symptoms among pregnant and non-pregnant females remains unknown. Here, we examined the differences in viral loads, SARS-CoV-2-specific antibody titers, proinflammatory cytokines, and levels of T cell activation after SARS-CoV-2 sub-lethal infection between pregnant and non-pregnant human Angiotensin-Converting Enzyme II (ACE2) transgenic mouse models. Both mice showed elevated levels of viral loads in the lung at 4 days post-infection (dpi). However, viral loads in the pregnant group remained elevated at 7 dpi while decreased in the non-pregnant group. Consistent with viral loads, increased production of proinflammatory cytokines was detected from the pregnant group, and the IgM or SARS-CoV-2-specific IgG antibody in serum of pregnant mice featured delayed elevation compared with non-pregnant mice. Moreover, by accessing kinetics of activation marker expression of peripheral T cells after infection, a lower level of CD8+ T cell activation was observed in pregnant mice, further demonstrating the difference of immune-response between pregnant and non-pregnant mice. Although vertical transmission did not occur as SARS-CoV-2 RNA was absent in the uterus and fetus from the infected pregnant mice, a lower pregnancy rate was observed when the mice were infected before embryo implantation after mating, indicating that SARS-CoV-2 infection may interfere with mice's fertility at a specific time window. In summary, pregnant mice bear a weaker ability to eliminate the SARS-CoV-2 virus than non-pregnant mice, which was correlated with lower levels of antibody production and T cell activation.

8.
Nat Biomed Eng ; 6(3): 276-285, 2022 03.
Article in English | MEDLINE | ID: covidwho-1671563

ABSTRACT

The detection of samples at ultralow concentrations (one to ten copies in 100 µl) in biofluids is hampered by the orders-of-magnitude higher amounts of 'background' biomolecules. Here we report a molecular system, immobilized on a liquid-gated graphene field-effect transistor and consisting of an aptamer probe bound to a flexible single-stranded DNA cantilever linked to a self-assembled stiff tetrahedral double-stranded DNA structure, for the rapid and ultrasensitive electromechanical detection (down to one to two copies in 100 µl) of unamplified nucleic acids in biofluids, and also of ions, small molecules and proteins, as we show for Hg2+, adenosine 5'-triphosphate and thrombin. We implemented an electromechanical biosensor for the detection of SARS-CoV-2 into an integrated and portable prototype device, and show that it detected SARS-CoV-2 RNA in less than four minutes in all nasopharyngeal samples from 33 patients with COVID-19 (with cycle threshold values of 24.9-41.3) and in none of the 54 COVID-19-negative controls, without the need for RNA extraction or nucleic acid amplification.


Subject(s)
COVID-19 , Graphite , COVID-19/diagnosis , Humans , Ions , RNA, Viral/genetics , SARS-CoV-2/genetics
9.
Cell Res ; 32(1): 24-37, 2022 01.
Article in English | MEDLINE | ID: covidwho-1537308

ABSTRACT

Host cellular receptors play key roles in the determination of virus tropism and pathogenesis. However, little is known about SARS-CoV-2 host receptors with the exception of ACE2. Furthermore, ACE2 alone cannot explain the multi-organ tropism of SARS-CoV-2 nor the clinical differences between SARS-CoV-2 and SARS-CoV, suggesting the involvement of other receptor(s). Here, we performed genomic receptor profiling to screen 5054 human membrane proteins individually for interaction with the SARS-CoV-2 capsid spike (S) protein. Twelve proteins, including ACE2, ASGR1, and KREMEN1, were identified with diverse S-binding affinities and patterns. ASGR1 or KREMEN1 is sufficient for the entry of SARS-CoV-2 but not SARS-CoV in vitro and in vivo. SARS-CoV-2 utilizes distinct ACE2/ASGR1/KREMEN1 (ASK) receptor combinations to enter different cell types, and the expression of ASK together displays a markedly stronger correlation with virus susceptibility than that of any individual receptor at both the cell and tissue levels. The cocktail of ASK-related neutralizing antibodies provides the most substantial blockage of SARS-CoV-2 infection in human lung organoids when compared to individual antibodies. Our study revealed an interacting host receptome of SARS-CoV-2, and identified ASGR1 and KREMEN1 as alternative functional receptors that play essential roles in ACE2-independent virus entry, providing insight into SARS-CoV-2 tropism and pathogenesis, as well as a community resource and potential therapeutic strategies for further COVID-19 investigations.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Asialoglycoprotein Receptor , Humans , Membrane Proteins , Protein Binding , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
10.
Nat Commun ; 12(1): 6304, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500462

ABSTRACT

Accumulating mutations in the SARS-CoV-2 Spike (S) protein can increase the possibility of immune escape, challenging the present COVID-19 prophylaxis and clinical interventions. Here, 3 receptor binding domain (RBD) specific monoclonal antibodies (mAbs), 58G6, 510A5 and 13G9, with high neutralizing potency blocking authentic SARS-CoV-2 virus display remarkable efficacy against authentic B.1.351 virus. Surprisingly, structural analysis has revealed that 58G6 and 13G9 both recognize the steric region S470-495 on the RBD, overlapping the E484K mutation presented in B.1.351. Also, 58G6 directly binds to another region S450-458 in the RBD. Significantly, 58G6 and 510A5 both demonstrate prophylactic efficacy against authentic SARS-CoV-2 and B.1.351 viruses in the transgenic mice expressing human ACE2 (hACE2), protecting weight loss and reducing virus loads. Together, we have evidenced 2 potent neutralizing Abs with unique mechanism targeting authentic SARS-CoV-2 mutants, which can be promising candidates to fulfill the urgent needs for the prolonged COVID-19 pandemic.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/chemistry , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Binding Sites , COVID-19/pathology , COVID-19/virology , Epitopes , Humans , Mice , Mice, Transgenic , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Viral Load/drug effects , Weight Loss/drug effects
11.
Nano Lett ; 21(22): 9450-9457, 2021 11 24.
Article in English | MEDLINE | ID: covidwho-1500414

ABSTRACT

Direct SARS-CoV-2 nucleic acid testing with fast speed and high frequency is crucial for controlling the COVID-19 pandemic. Here, direct testing of SARS-CoV-2 nucleic acid is realized by field-effect transistors (FETs) with an electro-enrichable liquid gate (LG) anchored by tetrahedral DNA nanostructures (TDNs). The applied gate bias electrostatically preconcentrates nucleic acids, while the liquid gate with TDNs provides efficient analyte recognition and signal transduction. The average diagnosis time is ∼80 s, and the limit of detection approaches 1-2 copies in 100 µL of clinical samples without nucleic acid extraction and amplification. As such, TDN-LG FETs solve the dilemma of COVID-19 testing on mass scale that diagnosis accuracy and speed undergo trade-off. In addition, TDN-LG FETs achieve unamplified 10-in-1 pooled nucleic acid testing for the first time, and the results are consistent with PCR. Thus, this technology promises on-site and wide population COVID-19 screening and ensures safe world-reopening.


Subject(s)
COVID-19 , Nanostructures , Nucleic Acids , COVID-19 Testing , DNA/genetics , Humans , Pandemics , SARS-CoV-2 , Sensitivity and Specificity
12.
J Am Chem Soc ; 143(41): 17004-17014, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1461966

ABSTRACT

Rapid screening of infected individuals from a large population is an effective means in epidemiology, especially to contain outbreaks such as COVID-19. The gold standard assays for COVID-19 diagnostics are mainly based on the reverse transcription polymerase chain reaction, which mismatches the requirements for wide-population screening due to time-consuming nucleic acid extraction and amplification procedures. Here, we report a direct nucleic acid assay by using a graphene field-effect transistor (g-FET) with Y-shaped DNA dual probes (Y-dual probes). The assay relies on Y-dual probes modified on g-FET simultaneously targeting ORF1ab and N genes of SARS-CoV-2 nucleic acid, enabling high a recognition ratio and a limit of detection (0.03 copy µL-1) 1-2 orders of magnitude lower than existing nucleic acid assays. The assay realizes the fastest nucleic acid testing (∼1 min) and achieves direct 5-in-1 pooled testing for the first time. Owing to its rapid, ultrasensitive, easily operated features as well as capability in pooled testing, it holds great promise as a comprehensive tool for population-wide screening of COVID-19 and other epidemics.


Subject(s)
DNA Probes , DNA, Viral/analysis , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/virology , Graphite/chemistry , Humans , Limit of Detection
13.
Sci Bull (Beijing) ; 66(9): 925-936, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1386590

ABSTRACT

The SARS-CoV-2 infection is spreading rapidly worldwide. Efficacious antiviral therapeutics against SARS-CoV-2 is urgently needed. Here, we discovered that protoporphyrin IX (PpIX) and verteporfin, two Food and Drug Administration (FDA)-approved drugs, completely inhibited the cytopathic effect produced by SARS-CoV-2 infection at 1.25 µmol/L and 0.31 µmol/L, respectively, and their EC50 values of reduction of viral RNA were at nanomolar concentrations. The selectivity indices of PpIX and verteporfin were 952.74 and 368.93, respectively, suggesting a broad margin of safety. Importantly, PpIX and verteporfin prevented SARS-CoV-2 infection in mice adenovirally transduced with human angiotensin-converting enzyme 2 (ACE2). The compounds, sharing a porphyrin ring structure, were shown to bind viral receptor ACE2 and interfere with the interaction between ACE2 and the receptor-binding domain of viral S protein. Our study suggests that PpIX and verteporfin are potent antiviral agents against SARS-CoV-2 infection and sheds new light on developing novel chemoprophylaxis and chemotherapy against SARS-CoV-2.

14.
Front Immunol ; 12: 653189, 2021.
Article in English | MEDLINE | ID: covidwho-1172966

ABSTRACT

After the pandemic of COVID-19, neutralizing antibodies (NAbs) against SARS-CoV-2 have been developed for the prophylactic and therapeutic purposes. However, few methodologies are described in detail on how to rapidly and efficiently generate effective NAbs to SARS-CoV-2. Here, we integrated and optimized a strategically screening method for NAbs, which has enabled us to obtain SARS-CoV-2 receptor-binding domain (RBD) specific NAbs within 6 days, followed by additional 9 days for antibody production and function analysis. Using this method, we obtained 198 specific Abs against SARS-CoV-2 RBD from the blood samples of COVID-19 convalescent patients, and 96 of them showed neutralizing activity. At least 20% of these NAbs exhibited advanced neutralizing potency and high affinity, with the top two NAbs showing half-maximal inhibitory concentration (IC50) to block authentic SARS-CoV-2 at 9.88 and 11.13 ng/ml, respectively. Altogether, our study provides an effective methodology with high applicable value for discovering potential preventative and therapeutic NAbs for the emerging infectious diseases.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , Humans , SARS-CoV-2/immunology , SARS-CoV-2/metabolism
15.
Nat Commun ; 12(1): 961, 2021 02 11.
Article in English | MEDLINE | ID: covidwho-1078585

ABSTRACT

The global spread of SARS-CoV-2 is posing major public health challenges. One feature of SARS-CoV-2 spike protein is the insertion of multi-basic residues at the S1/S2 subunit cleavage site. Here, we find that the virus with intact spike (Sfull) preferentially enters cells via fusion at the plasma membrane, whereas a clone (Sdel) with deletion disrupting the multi-basic S1/S2 site utilizes an endosomal entry pathway. Using Sdel as model, we perform a genome-wide CRISPR screen and identify several endosomal entry-specific regulators. Experimental validation of hits from the CRISPR screen shows that host factors regulating the surface expression of angiotensin-converting enzyme 2 (ACE2) affect entry of Sfull virus. Animal-to-animal transmission with the Sdel virus is reduced compared to Sfull in the hamster model. These findings highlight the critical role of the S1/S2 boundary of SARS-CoV-2 spike protein in modulating virus entry and transmission and provide insights into entry of coronaviruses.


Subject(s)
COVID-19/virology , CRISPR-Cas Systems , Genome-Wide Association Study , Host-Pathogen Interactions , SARS-CoV-2/physiology , Virus Internalization , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/genetics , Chlorocebus aethiops , Disease Models, Animal , Endosomes/virology , HeLa Cells , Humans , Mesocricetus , Serine Endopeptidases , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
16.
Nat Commun ; 12(1): 866, 2021 02 08.
Article in English | MEDLINE | ID: covidwho-1069107

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly become a global public health threat. The efficacy of several repurposed drugs has been evaluated in clinical trials. Among these drugs, a second-generation antiandrogen agent, enzalutamide, was proposed because it reduces the expression of transmembrane serine protease 2 (TMPRSS2), a key component mediating SARS-CoV-2-driven entry, in prostate cancer cells. However, definitive evidence for the therapeutic efficacy of enzalutamide in COVID-19 is lacking. Here, we evaluated the antiviral efficacy of enzalutamide in prostate cancer cells, lung cancer cells, human lung organoids and Ad-ACE2-transduced mice. Tmprss2 knockout significantly inhibited SARS-CoV-2 infection in vivo. Enzalutamide effectively inhibited SARS-CoV-2 infection in human prostate cells, however, such antiviral efficacy was lacking in human lung cells and organoids. Accordingly, enzalutamide showed no antiviral activity due to the AR-independent TMPRSS2 expression in mouse and human lung epithelial cells. Moreover, we observed distinct AR binding patterns between prostate cells and lung cells and a lack of direct binding of AR to TMPRSS2 regulatory locus in human lung cells. Thus, our findings do not support the postulated protective role of enzalutamide in treating COVID-19 through reducing TMPRSS2 expression in lung cells.


Subject(s)
COVID-19/prevention & control , Organ Specificity/genetics , Phenylthiohydantoin/analogs & derivatives , SARS-CoV-2/drug effects , Serine Endopeptidases/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Benzamides , COVID-19/epidemiology , COVID-19/virology , Cell Line, Tumor , Cells, Cultured , Gene Expression/drug effects , Host-Pathogen Interactions/drug effects , Humans , Male , Mice, Knockout , Nitriles , Pandemics , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/virology , Protein Binding/drug effects , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism
17.
Cell Rep ; 34(5): 108699, 2021 02 02.
Article in English | MEDLINE | ID: covidwho-1044918

ABSTRACT

Several potent neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus have been identified. However, antibody-dependent enhancement (ADE) has not been comprehensively studied for SARS-CoV-2, and the relationship between enhancing versus neutralizing activities and antibody epitopes remains unknown. Here, we select a convalescent individual with potent IgG neutralizing activity and characterize his antibody response. Monoclonal antibodies isolated from memory B cells target four groups of five non-overlapping receptor-binding domain (RBD) epitopes. Antibodies to one group of these RBD epitopes mediate ADE of entry in Raji cells via an Fcγ receptor-dependent mechanism. In contrast, antibodies targeting two other distinct epitope groups neutralize SARS-CoV-2 without ADE, while antibodies against the fourth epitope group are poorly neutralizing. One antibody, XG014, potently cross-neutralizes SARS-CoV-2 variants, as well as SARS-CoV-1, with respective IC50 (50% inhibitory concentration) values as low as 5.1 and 23.7 ng/mL, while not exhibiting ADE. Therefore, neutralization and ADE of human SARS-CoV-2 antibodies correlate with non-overlapping RBD epitopes.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody-Dependent Enhancement , Epitopes/immunology , Adolescent , Adult , Aged , Antibodies, Monoclonal/immunology , Antibodies, Viral/therapeutic use , Antigen-Antibody Reactions , COVID-19/drug therapy , COVID-19/immunology , COVID-19/virology , Cell Line , Child , Cluster Analysis , Female , Humans , Inhibitory Concentration 50 , Male , Middle Aged , Protein Domains/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Young Adult
18.
Nat Commun ; 12(1): 264, 2021 01 11.
Article in English | MEDLINE | ID: covidwho-1019816

ABSTRACT

The ongoing pandemic of coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Neutralizing antibodies against SARS-CoV-2 are an option for drug development for treating COVID-19. Here, we report the identification and characterization of two groups of mouse neutralizing monoclonal antibodies (MAbs) targeting the receptor-binding domain (RBD) on the SARS-CoV-2 spike (S) protein. MAbs 2H2 and 3C1, representing the two antibody groups, respectively, bind distinct epitopes and are compatible in formulating a noncompeting antibody cocktail. A humanized version of the 2H2/3C1 cocktail is found to potently neutralize authentic SARS-CoV-2 infection in vitro with half inhibitory concentration (IC50) of 12 ng/mL and effectively treat SARS-CoV-2-infected mice even when administered at as late as 24 h post-infection. We determine an ensemble of cryo-EM structures of 2H2 or 3C1 Fab in complex with the S trimer up to 3.8 Å resolution, revealing the conformational space of the antigen-antibody complexes and MAb-triggered stepwise allosteric rearrangements of the S trimer, delineating a previously uncharacterized dynamic process of coordinated binding of neutralizing antibodies to the trimeric S protein. Our findings provide important information for the development of MAb-based drugs for preventing and treating SARS-CoV-2 infections.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , Antibodies, Viral/chemistry , Antibodies, Viral/pharmacology , COVID-19/drug therapy , SARS-CoV-2/drug effects , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Cryoelectron Microscopy , Epitope Mapping , Epitopes , Female , Mice , Mice, Inbred BALB C , Models, Molecular , Protein Binding/drug effects , Protein Conformation , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
19.
Signal Transduct Target Ther ; 5(1): 282, 2020 11 27.
Article in English | MEDLINE | ID: covidwho-947524

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed serious threats to global health and economy, thus calling for the development of safe and effective vaccines. The receptor-binding domain (RBD) in the spike protein of SARS-CoV-2 is responsible for its binding to angiotensin-converting enzyme 2 (ACE2) receptor. It contains multiple dominant neutralizing epitopes and serves as an important antigen for the development of COVID-19 vaccines. Here, we showed that immunization of mice with a candidate subunit vaccine consisting of SARS-CoV-2 RBD and Fc fragment of human IgG, as an immunopotentiator, elicited high titer of RBD-specific antibodies with robust neutralizing activity against both pseudotyped and live SARS-CoV-2 infections. The mouse antisera could also effectively neutralize infection by pseudotyped SARS-CoV-2 with several natural mutations in RBD and the IgG extracted from the mouse antisera could also show neutralization against pseudotyped SARS-CoV and SARS-related coronavirus (SARSr-CoV). Vaccination of human ACE2 transgenic mice with RBD-Fc could effectively protect mice from the SARS-CoV-2 challenge. These results suggest that SARS-CoV-2 RBD-Fc has good potential to be further developed as an effective and broad-spectrum vaccine to prevent infection of the current SARS-CoV-2 and its mutants, as well as future emerging SARSr-CoVs and re-emerging SARS-CoV.


Subject(s)
Antibodies, Neutralizing/pharmacology , COVID-19 Vaccines/pharmacology , COVID-19/drug therapy , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Epitopes/immunology , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/pharmacology , Mice , Mice, Inbred BALB C , Pandemics , Protein Binding/drug effects , Protein Binding/immunology , Receptors, Virus/genetics , Receptors, Virus/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
20.
Proc Natl Acad Sci U S A ; 117(44): 27141-27147, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-834980

ABSTRACT

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the urgent need to rapidly develop therapeutic strategies for such emerging viruses without effective vaccines or drugs. Here, we report a decoy nanoparticle against COVID-19 through a powerful two-step neutralization approach: virus neutralization in the first step followed by cytokine neutralization in the second step. The nanodecoy, made by fusing cellular membrane nanovesicles derived from human monocytes and genetically engineered cells stably expressing angiotensin converting enzyme II (ACE2) receptors, possesses an antigenic exterior the same as source cells. By competing with host cells for virus binding, these nanodecoys effectively protect host cells from the infection of pseudoviruses and authentic SARS-CoV-2. Moreover, relying on abundant cytokine receptors on the surface, the nanodecoys efficiently bind and neutralize inflammatory cytokines including interleukin 6 (IL-6) and granulocyte-macrophage colony-stimulating factor (GM-CSF), and significantly suppress immune disorder and lung injury in an acute pneumonia mouse model. Our work presents a simple, safe, and robust antiviral nanotechnology for ongoing COVID-19 and future potential epidemics.


Subject(s)
Coronavirus Infections/therapy , Cytokines/antagonists & inhibitors , Nanoparticles/therapeutic use , Pneumonia, Viral/therapy , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus , COVID-19 , Cell Membrane/chemistry , Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , HEK293 Cells , Humans , Interleukin-6/antagonists & inhibitors , Mice , Mice, Inbred ICR , Monocytes , Nanoparticles/chemistry , Pandemics , Peptidyl-Dipeptidase A/metabolism , Receptors, Cytokine/metabolism , SARS-CoV-2 , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL