Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
China Tropical Medicine ; 22(1):89-93, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-1761279

ABSTRACT

Objective: This paper reports a case of Plasmodium ovale and SARS-CoV-2 coinfection, which was successfully cured under the strategy of early diagnosis, timely antiviral and anti-malarial treatment, offering a reference for clinical diagnosis and treatment of this disease. Methods The epidemiological history, clinical manifestations, treatment status and laboratory results of the case were collected for case analysis.

2.
Cell Biosci ; 12(1): 14, 2022 Feb 09.
Article in English | MEDLINE | ID: covidwho-1702143

ABSTRACT

BACKGROUND: COVID-19 pneumonia has caused huge impact on the health of infected patients and associated with high morbidity and mortality. Shift in the lung microbial ecology upon such viral infection often worsens the disease and increases host susceptibility to superinfections. Bacterial superinfection contributes to the aggravation of COVID-19 and poses a great challenge to clinical treatments. An in-depth investigation on superinfecting bacteria in COVID-19 patients might facilitate understanding of lung microenvironment post virus infections and superinfection mechanism. RESULTS: We analyzed the adaptation of two pairs of P. aeruginosa strains with the same MLST type isolated from two critical COVID-19 patients by combining sequencing analysis and phenotypic assays. Both P. aeruginosa strains were found to turn on alginate biosynthesis and attenuate type VI secretion system (T6SS) during short-term colonization in the COVID-19 patients, which results in excessive biofilm formation and virulence reduction-two distinct markers for chronic infections. The macrophage cytotoxicity test and intracellular reactive oxygen species measurement confirmed that the adapted P. aeruginosa strains reduced their virulence towards host cells and are better to escape from host immune clearance than their ancestors. CONCLUSION: Our study suggests that SARS-CoV-2 infection can create a lung environment that allow rapid adaptive evolution of bacterial pathogens with genetic traits suitable for chronic infections.

3.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-325139

ABSTRACT

Objectives: The aim of this study was to identify the parameters in routine blood tests that can be used to evaluate the severity of coronavirus disease 2019 (COVID-19) and thus assist in clinically predicting the extent of progression. Methods This study retrospectively analyzed the epidemiological, clinical symptom and laboratory examination data of 159 COVID-19 patients. The percentage of lymphocytes (Lym%) and hemoglobin (HGB) were integrated into a joint parameter, Lym%&HGB, by binary logistic regression. Results Both Lym% and HGB gradually decreased with disease progression whereas the joint parameter Lym%&HGB increased gradually with disease progression. When using Lym%, HGB, and Lym%&HGB to predict COVID-19 severity, the area under the receiver operating characteristic (ROC) curve (AUC) was 0.89, 0.79, and 0.92, respectively. The dynamic change curves showed that Lym% and HGB continued to decline while Lym%&HGB continued to increase with disease progression in patients with severe COVID. The change in Lym%&HGB was more prominent than the changes in Lym% and HBG. Conclusions The joint parameter Lym%&HGB can serve as a good tool to differentiate severe and nonsevere COVID-19, and it has a higher sensitivity and specificity than either Lym% or HGB alone.

4.
J Infect Public Health ; 15(2): 222-227, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1611866

ABSTRACT

OBJECTIVES: The severe coronavirus disease 2019 (COVID-19) is characterized by acute respiratory distress syndrome (ARDS) and risk of fungal co-infection, pulmonary aspergillosis in particular. However, COVID-19 associated pulmonary aspergillosis (CAPA) cases remain limited due to the difficulty in diagnosis. METHODS: We describe presumptive invasive aspergillosis in eight patients diagnosed with COVID-19 in a single center in Shenzhen, China. Data collected include underlying conditions, mycological findings, immunodetection results, therapies and outcomes. RESULTS: Four of the eight patients had tested positive for Aspergillus by either culture or Next-generation sequencing analysis of sputum or bronchoalveolar lavage fluid (BALF), while the rest of patients had only positive results in antigen or antibody detection. Although all patients received antifungal therapies, six of these eight patients (66.7%) died. CONCLUSION: Due to the high mortality rate of CAPA, clinical care in patients with CAPA deserves more attention.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/epidemiology , Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/epidemiology , SARS-CoV-2 , Tertiary Care Centers
5.
JAMA ; 323(16): 1582-1589, 2020 04 28.
Article in English | MEDLINE | ID: covidwho-1453469

ABSTRACT

Importance: Coronavirus disease 2019 (COVID-19) is a pandemic with no specific therapeutic agents and substantial mortality. It is critical to find new treatments. Objective: To determine whether convalescent plasma transfusion may be beneficial in the treatment of critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Design, Setting, and Participants: Case series of 5 critically ill patients with laboratory-confirmed COVID-19 and acute respiratory distress syndrome (ARDS) who met the following criteria: severe pneumonia with rapid progression and continuously high viral load despite antiviral treatment; Pao2/Fio2 <300; and mechanical ventilation. All 5 were treated with convalescent plasma transfusion. The study was conducted at the infectious disease department, Shenzhen Third People's Hospital in Shenzhen, China, from January 20, 2020, to March 25, 2020; final date of follow-up was March 25, 2020. Clinical outcomes were compared before and after convalescent plasma transfusion. Exposures: Patients received transfusion with convalescent plasma with a SARS-CoV-2-specific antibody (IgG) binding titer greater than 1:1000 (end point dilution titer, by enzyme-linked immunosorbent assay [ELISA]) and a neutralization titer greater than 40 (end point dilution titer) that had been obtained from 5 patients who recovered from COVID-19. Convalescent plasma was administered between 10 and 22 days after admission. Main Outcomes and Measures: Changes of body temperature, Sequential Organ Failure Assessment (SOFA) score (range 0-24, with higher scores indicating more severe illness), Pao2/Fio2, viral load, serum antibody titer, routine blood biochemical index, ARDS, and ventilatory and extracorporeal membrane oxygenation (ECMO) supports before and after convalescent plasma transfusion. Results: All 5 patients (age range, 36-65 years; 2 women) were receiving mechanical ventilation at the time of treatment and all had received antiviral agents and methylprednisolone. Following plasma transfusion, body temperature normalized within 3 days in 4 of 5 patients, the SOFA score decreased, and Pao2/Fio2 increased within 12 days (range, 172-276 before and 284-366 after). Viral loads also decreased and became negative within 12 days after the transfusion, and SARS-CoV-2-specific ELISA and neutralizing antibody titers increased following the transfusion (range, 40-60 before and 80-320 on day 7). ARDS resolved in 4 patients at 12 days after transfusion, and 3 patients were weaned from mechanical ventilation within 2 weeks of treatment. Of the 5 patients, 3 have been discharged from the hospital (length of stay: 53, 51, and 55 days), and 2 are in stable condition at 37 days after transfusion. Conclusions and Relevance: In this preliminary uncontrolled case series of 5 critically ill patients with COVID-19 and ARDS, administration of convalescent plasma containing neutralizing antibody was followed by improvement in their clinical status. The limited sample size and study design preclude a definitive statement about the potential effectiveness of this treatment, and these observations require evaluation in clinical trials.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/therapy , Adult , Aged , Antibodies, Viral/blood , Antiviral Agents/therapeutic use , Blood Donors , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Critical Illness , Female , Glucocorticoids/therapeutic use , Humans , Immunization, Passive , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Methylprednisolone/therapeutic use , Middle Aged , Organ Dysfunction Scores , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/physiopathology , SARS-CoV-2
6.
Front Cardiovasc Med ; 8: 604736, 2021.
Article in English | MEDLINE | ID: covidwho-1403460

ABSTRACT

Low-density lipoprotein cholesterol (LDL-C) is a well-known risk factor for coronary heart disease but protects against infection and sepsis. We aimed to disclose the exact association between LDL-C and severe 2019 novel coronavirus disease (COVID-19). Baseline data were retrospectively collected for 601 non-severe COVID-19 patients from two centers in Guangzhou and one center in Shenzhen, and patients on admission were medically observed for at least 15 days to determine the final outcome, including the non-severe group (n = 460) and the severe group (severe and critical cases) (n = 141). Among 601 cases, 76 (12.65%) received lipid-lowering therapy; the proportion of patients taking lipid-lowering drugs in the severe group was higher than that in the non-severe group (22.7 vs. 9.6%). We found a U-shaped association between LDL-C level and risk of severe COVID-19 using restricted cubic splines. Using univariate logistic regression analysis, odds ratios for severe COVID-19 for patients with LDL-C ≤1.6 mmol/L (61.9 mg/dL) and above 3.4 mmol/L (131.4 mg/dL) were 2.29 (95% confidence interval 1.12-4.68; p = 0.023) and 2.02 (1.04-3.94; p = 0.039), respectively, compared to those with LDL-C of 2.81-3.40 mmol/L (108.6-131.4 mg/dL); following multifactorial adjustment, odds ratios were 2.61 (1.07-6.37; p = 0.035) and 2.36 (1.09-5.14; p = 0.030). Similar results were yielded using 0.3 and 0.5 mmol/L categories of LDL-C and sensitivity analyses. Both low and high LDL-C levels were significantly associated with higher risk of severe COVID-19. Although our findings do not necessarily imply causality, they suggest that clinicians should pay more attention to lipid-lowering therapy in COVID-19 patients to improve clinical prognosis.

7.
Front Cell Infect Microbiol ; 11: 641920, 2021.
Article in English | MEDLINE | ID: covidwho-1170079

ABSTRACT

Pseudomonas aeruginosa is a biofilm-forming opportunistic pathogen which causes chronic infections in immunocompromised patients and leads to high mortality rate. It is identified as a common coinfecting pathogen in COVID-19 patients causing exacerbation of illness. In our hospital, P. aeruginosa is one of the top coinfecting bacteria identified among COVID-19 patients. We collected a strong biofilm-forming P. aeruginosa strain displaying small colony variant morphology from a severe COVID-19 patient. Genomic and transcriptomic sequencing analyses were performed with phenotypic validation to investigate its adaptation in SARS-CoV-2 infected environment. Genomic characterization predicted specific genomic islands highly associated with virulence, transcriptional regulation, and DNA restriction-modification systems. Epigenetic analysis revealed a specific N6-methyl adenine (m6A) methylating pattern including methylation of alginate, flagellar and quorum sensing associated genes. Differential gene expression analysis indicated that this isolate formed excessive biofilm by reducing flagellar formation (7.4 to 1,624.1 folds) and overproducing extracellular matrix components including CdrA (4.4 folds), alginate (5.2 to 29.1 folds) and Pel (4.8-5.5 folds). In summary, we demonstrated that P. aeuginosa clinical isolates with novel epigenetic markers could form excessive biofilm, which might enhance its antibiotic resistance and in vivo colonization in COVID-19 patients.


Subject(s)
Adaptation, Physiological/physiology , COVID-19/complications , Coinfection/complications , Pseudomonas Infections/complications , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Alginates , Bacteria , Biofilms/growth & development , DNA Methylation , Epigenomics , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genome, Bacterial , Humans , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/classification , Quorum Sensing/genetics , SARS-CoV-2 , Transcriptome , Virulence
8.
Clin Respir J ; 15(7): 815-825, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1165887

ABSTRACT

BACKGROUND: Co-infections, secondary bacterial or fungal infections, are important risk factors for poor outcomes in viral infections. The prevalence of co-infection and secondary infection in patients infected with SARS-CoV-2 is not well understood. AIMS: To investigate the role of co-infections and secondary infections in disease severity of hospitalized individuals with COVID-19. MATERIALS AND METHODS: A retrospective study was carried out between 11 January 2020 and 1 March 2020 among 408 laboratory confirmed COVID-19 patients in China. These patients were divided into three groups based on disease severity: mild or moderate, severe, or critically ill. Microbiological pathogens in blood, urine, and respiratory tract specimens were detected by the combination of culture, serology, polymerase chain reaction, and metagenomic next-generation sequencing (mNGS). RESULTS: The median age of participants was 48 years (IQR 34-60 years). Fifty-two patients (12.7%) had at least one additional pathogen, 8.1% were co-infected, and 5.1% had a secondary infection. There were 13 Mycoplasma pneumoniae cases, 8 Haemophilus influenzae cases, 8 respiratory viruses, and 3 Streptococcus pneumoniae cases, primarily detected in mild and moderate COVID-19 patients. Hospital-acquired infection pathogens were more common in critically ill patients. Compared to those without additional pathogens, patients with co-infections and/or secondary infections were more likely to receive antibiotics (p < 0.001) and have elevated levels of d-dimer (p = 0.0012), interleukin-6 (p = 0.0027), and procalcitonin (p = 0.0002). The performance of conventional culture was comparable with that of mNGS in diagnosis of secondary infections. CONCLUSION: Co-infections and secondary infections existed in hospitalized COVID-19 patients and were relevant to the disease severity. Screening of common respiratory pathogens and hospital infection control should be strengthened.


Subject(s)
COVID-19 , Coinfection , Virus Diseases , Adult , Coinfection/epidemiology , Humans , Middle Aged , Retrospective Studies , SARS-CoV-2
9.
Clin Infect Dis ; 71(16): 2255-2258, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-1153151

ABSTRACT

We profiled the serological responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein and spike (S) glycoprotein. The majority of the patients developed robust antibody responses between 17 and 23 days after illness onset. Delayed, but stronger, antibody responses were observed in critical patients.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Immunoglobulin G/blood , Immunoglobulin M/blood , Adult , Aged , COVID-19/diagnosis , COVID-19 Testing , China , Female , Hospitalization , Humans , Immunity, Humoral , Male , Middle Aged , SARS-CoV-2
10.
Ann Transl Med ; 8(19): 1231, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-921329

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has spread rapidly around the world since December, 2019. This study aimed to identify parameters in routine blood tests that could be used to evaluate the severity of coronavirus disease 2019 (COVID-19) and, thus, assist with the clinical prediction of the extent of progression. METHODS: This retrospective study analyzed the epidemiological, clinical symptom, and laboratory examination data of 159 patients diagnosed with COVID-19. The percentage of lymphocytes (Lym%) and hemoglobin (HGB) were integrated into a joint parameter, Lym% & HGB, through binary logistic regression. RESULTS: Individually, Lym% and HGB decreased gradually with disease progression whereas the joint parameter Lym% & HGB increased gradually with disease progression. When Lym%, HGB, and Lym% & HGB were used to predict the severity of COVID-19, the area under the receiver operating characteristic (ROC) curve (AUC) was 0.89, 0.79, and 0.92, respectively. The dynamic change curves showed that Lym% and HGB continued to decline while Lym% & HGB continued to increase with disease progression in patients with severe COVID. The change in Lym% & HGB was more prominent than those in Lym% and HBG. CONCLUSIONS: The joint parameter Lym% & HGB could serve as an effective tool for differentiating severe and nonsevere COVID-19, and its sensitivity and specificity are higher than those of Lym% or HGB alone.

11.
SSRN; 2020.
Preprint | SSRN | ID: ppcovidwho-718

ABSTRACT

Background: In December 2019, a cluster of acute respiratory illness caused by SARS-CoV-2, now known as Coronavirus Disease 2019 (COVID-19), occurred in Wuhan

12.
Infection ; 48(6): 861-870, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-680116

ABSTRACT

PURPOSE: The coronavirus disease 2019 (COVID-19) outbreak has become a global public health concern; however, relatively few detailed reports of related cardiac injury are available. The aims of this study were to compare the clinical and echocardiographic characteristics of inpatients in the intensive-care unit (ICU) and non-ICU patients. METHODS: We recruited 416 patients diagnosed with COVID-19 and divided them into two groups: ICU (n = 35) and non-ICU (n = 381). Medical histories, laboratory findings, and echocardiography data were compared. RESULTS: The levels of myocardial injury markers in ICU vs non-ICU patients were as follows: troponin I (0.029 ng/mL [0.007-0.063] vs 0.006 ng/mL [0.006-0.006]) and myoglobin (65.45 µg/L [39.77-130.57] vs 37.00 µg/L [26.40-53.54]). Echocardiographic findings included ventricular wall thickening (12 [39%] vs 1 [4%]), pulmonary hypertension (9 [29%] vs 0 [0%]), and reduced left-ventricular ejection fraction (5 [16%] vs 0 [0%]). Overall, 10% of the ICU patients presented with right heart enlargement, thickened right-ventricular wall, decreased right heart function, and pericardial effusion. Cardiac complications were more common in ICU patients, including acute cardiac injury (21 [60%] vs 13 [3%]) (including 2 cases of fulminant myocarditis), atrial or ventricular tachyarrhythmia (3 [9%] vs 3 [1%]), and acute heart failure (5 [14%] vs 0 [0%]). CONCLUSION: Myocardial injury marker elevation, ventricular wall thickening, pulmonary artery hypertension, and cardiac complications including acute myocardial injury, arrhythmia, and acute heart failure are more common in ICU patients with COVID-19. Cardiac injury in COVID-19 patients may be related more to the systemic response after infection rather than direct damage by coronavirus.


Subject(s)
COVID-19/complications , COVID-19/epidemiology , Heart Diseases/epidemiology , Heart Diseases/etiology , SARS-CoV-2 , Aged , COVID-19/diagnosis , COVID-19/virology , China/epidemiology , Comorbidity , Critical Care , Echocardiography , Female , Heart Diseases/diagnosis , Heart Diseases/mortality , Heart Function Tests , Humans , Male , Middle Aged , Myocarditis/diagnosis , Myocarditis/epidemiology , Myocarditis/etiology , Prognosis , Radiography, Thoracic , Symptom Assessment
13.
J Hepatol ; 73(3): 566-574, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-208943

ABSTRACT

BACKGROUND & AIMS: Recent data on the coronavirus disease 2019 (COVID-19) outbreak caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has begun to shine light on the impact of the disease on the liver. But no studies to date have systematically described liver test abnormalities in patients with COVID-19. We evaluated the clinical characteristics of COVID-19 in patients with abnormal liver test results. METHODS: Clinical records and laboratory results were obtained from 417 patients with laboratory-confirmed COVID-19 who were admitted to the only referral hospital in Shenzhen, China from January 11 to February 21, 2020 and followed up to March 7, 2020. Information on clinical features of patients with abnormal liver tests were collected for analysis. RESULTS: Of 417 patients with COVID-19, 318 (76.3%) had abnormal liver test results and 90 (21.5%) had liver injury during hospitalization. The presence of abnormal liver tests became more pronounced during hospitalization within 2 weeks, with 49 (23.4%), 31 (14.8%), 24 (11.5%) and 51 (24.4%) patients having alanine aminotransferase, aspartate aminotransferase, total bilirubin and gamma-glutamyl transferase levels elevated to more than 3× the upper limit of normal, respectively. Patients with abnormal liver tests of hepatocellular type or mixed type at admission had higher odds of progressing to severe disease (odds ratios [ORs] 2.73; 95% CI 1.19-6.3, and 4.44, 95% CI 1.93-10.23, respectively). The use of lopinavir/ritonavir was also found to lead to increased odds of liver injury (OR from 4.44 to 5.03, both p <0.01). CONCLUSION: Patients with abnormal liver tests were at higher risk of progressing to severe disease. The detrimental effects on liver injury mainly related to certain medications used during hospitalization, which should be monitored and evaluated frequently. LAY SUMMARY: Data on liver tests in patients with COVID-19 are scarce. We observed a high prevalence of liver test abnormalities and liver injury in 417 patients with COVID-19 admitted to our referral center, and the prevalence increased substantially during hospitalization. The presence of abnormal liver tests and liver injury were associated with the progression to severe pneumonia. The detrimental effects on liver injury were related to certain medications used during hospitalization, which warrants frequent monitoring and evaluation for these patients.


Subject(s)
Betacoronavirus , Coronavirus Infections/physiopathology , Liver Function Tests , Liver/physiopathology , Pneumonia, Viral/physiopathology , Adolescent , Adult , Aged , COVID-19 , Child , China/epidemiology , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Cross-Sectional Studies , Disease Progression , Female , Humans , Liver/injuries , Male , Middle Aged , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Prevalence , SARS-CoV-2 , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL