Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Drug Safety ; JOUR:1122-1123, 45(10).
Article in English | EMBASE | ID: covidwho-2085705

ABSTRACT

Introduction: As of April 3, 2022, 31 COVID-19 vaccines had received approval for use globally (1). With the fast-tracked development and concurrent introduction of vaccines in all countries, there is a need for equitable safety surveillance to monitor adverse events following immunization (AEFIs) in high-income and low- and middle- income countries (LMICs). Objective(s): To profile the AEFIs to COVID-19 vaccines, explore the difference in reported AEs between Africa and the rest of the world (RoW), and understand the policy considerations that inform the decision by funding organizations to strengthen safety surveillance systems in LMICs. Method(s): We used a convergent mixed methods design involving secondary analysis of 14,671,586 AEFIs to COVID-19 vaccines reported to VigiBasea by countries in the WHO Africa Region and the RoW between December 2020 and March 2022. The qualitative component consisted of 12 in-depth interviews with key policymakers from some donor/funding organizations. Result(s): With 87,351 out of 14,671,586 total reported AEFIs to COVID-19 vaccines (0.6%) Africa had the second-lowest crude AEFI reporting rate of 180 AEs per 1million administered doses. Reports from females made up 73.6% of reports from African and RoW compared to 24.4% for males. The highest number of reports came from persons 18-44 years. 26.0% of the reports were serious, with death being the reason for seriousness in 5% of the reports. Statistically significant differences in AEFI reporting by gender, age group, and serious AEs were found between Africa and the RoW. Astra- Zeneca, PfizerBioNtech, and Janssen vaccines were the most frequently associated with AEFIs in terms of the absolute number of AEs for Africa and RoW. Sputnik V contributed the highest percentage of AEs per vaccine for Africa. Headache, pyrexia, injection site pain, dizziness, and chills were the top 5 reported AEs for Africa and RoW. Qualitative findings revealed decisions of many funding organizations to fund safety surveillance in LMICs were influenced by considerations about country priorities, the perceived utility of the evidence generated for local decision making, and the contributions to global health by safety surveillance systems. Conclusion(s): Countries in Africa reported fewer AEFIs to COVID-19 vaccines in VigiBase relative to the RoW, with statistically significant differences in reporting of key parameters that warrant further investigation. Funding decisions by donor organizations were influenced by country priorities and the perceived value added by data generated from safety surveillance systems in LMICs to local and global decision making.

2.
Drug Safety ; 45(10):1122-1123, 2022.
Article in English | ProQuest Central | ID: covidwho-2046340

ABSTRACT

Introduction: As of April 3, 2022, 31 COVID-19 vaccines had received approval for use globally (1). With the fast-tracked development and concurrent introduction of vaccines in all countries, there is a need for equitable safety surveillance to monitor adverse events following immunization (AEFIs) in high-income and low- and middle-income countries (LMICs). Objective: To profile the AEFIs to COVID-19 vaccines, explore the difference in reported AEs between Africa and the rest of the world (RoW), and understand the policy considerations that inform the decision by funding organizations to strengthen safety surveillance systems in LMICs. Methods: We used a convergent mixed methods design involving secondary analysis of 14,671,586 AEFIs to COVID-19 vaccines reported to VigiBasea by countries in the WHO Africa Region and the RoW between December 2020 and March 2022. The qualitative component consisted of 12 in-depth interviews with key policymakers from some donor/funding organizations. Results: With 87,351 out of 14,671,586 total reported AEFIs to COVID-19 vaccines (0.6%) Africa had the second-lowest crude AEFI reporting rate of 180 AEs per 1million administered doses. Reports from females made up 73.6% of reports from African and RoW compared to 24.4% for males. The highest number of reports came from persons 18-44 years. 26.0% of the reports were serious, with death being the reason for seriousness in 5% of the reports. Statistically significant differences in AEFI reporting by gender, age group, and serious AEs were found between Africa and the RoW. AstraZeneca, PfizerBioNtech, and Janssen vaccines were the most frequently associated with AEFIs in terms of the absolute number of AEs for Africa and RoW. Sputnik V contributed the highest percentage of AEs per vaccine for Africa. Headache, pyrexia, injection site pain, dizziness, and chills were the top 5 reported AEs for Africa and RoW. Qualitative findings revealed decisions of many funding organizations to fund safety surveillance in LMICs were influenced by considerations about country priorities, the perceived utility of the evidence generated for local decision making, and the contributions to global health by safety surveillance systems. Conclusion: Countries in Africa reported fewer AEFIs to COVID-19 vaccines in VigiBase relative to the RoW, with statistically significant differences in reporting of key parameters that warrant further investigation. Funding decisions by donor organizations were influenced by country priorities and the perceived value added by data generated from safety surveillance systems in LMICs to local and global decision making.

3.
Embase;
Preprint in English | EMBASE | ID: ppcovidwho-326948

ABSTRACT

COVID-19 has affected billions of people around the world directly or indirectly. The response to the pandemic has focused on preventing the spread of the disease and improving treatment options. Diagnostic technologies have played a key role in this response since the beginning of the pandemic. As vaccines and other treatments have been developed and deployed, interest in understanding and measuring the individual level of immune protection has increased. Historically, use of antibody titers to measure systemic immunity has been constrained by an incomplete understanding of the relationship between antibodies and immunity, the lack of international standards for antibody concentration to enable cross-study comparisons, and insufficient clinical data to allow for the development of robust antibody-immunity models. However, these constraints have recently shifted. With a deeper understanding of antibodies, the promulgation of WHO antibody standards, and the development of immunity models using datasets from multiple COVID-19 vaccine trials, certain types of quantitative antibody tests may now provide a way to monitor individual or community immunity against COVID-19. Specifically, tests that quantitate the concentration of anti-RBD IgG –antibodies that target the receptor binding domain of the S1 spike protein component of the SARS-CoV-2 virus – show promise as a useful and scalable measure of the COVID-19 immunity of both individuals and communities. However, to fulfill this promise, a rapid and easy-to-administer test is needed. To address this important clinical need, Brevitest deployed its point-of-care-capable technology platform that can run a rapid (<15 minute), quantitative antibody test with a sample of 10 µl of whole blood from a fingerstick. The test we validated on this platform measures the concentration of anti-RBD IgG in Binding Antibody Units per milliliter (BAU/mL) per WHO Reference Standard NIBSC 20/136. In this paper, we present studies used to characterize the Brevitest anti-RBD IgG assay and evaluate its clinical performance, lower limits of measurement, precision, linearity, interference, and cross-reactivity. The results demonstrate the ability of this assay to measure a patient’s anti-RBD IgG concentration. This information, together with models developed from recent COVID-19 vaccine clinical trials, can provide a means of assessing the current level of immune protection of an individual or community against COVID-19 infection.

4.
McCrone, J. T.; Hill, V.; Bajaj, S.; Pena, R. E.; Lambert, B. C.; Inward, R.; Bhatt, S.; Volz, E.; Ruis, C.; Dellicour, S.; Baele, G.; Zarebski, A. E.; Sadilek, A.; Wu, N.; Schneider, A.; Ji, X.; Raghwani, J.; Jackson, B.; Colquhoun, R.; O'Toole, Á, Peacock, T. P.; Twohig, K.; Thelwall, S.; Dabrera, G.; Myers, R.; Faria, N. R.; Huber, C.; Bogoch, I. I.; Khan, K.; du Plessis, L.; Barrett, J. C.; Aanensen, D. M.; Barclay, W. S.; Chand, M.; Connor, T.; Loman, N. J.; Suchard, M. A.; Pybus, O. G.; Rambaut, A.; Kraemer, M. U. G.; Robson, S. C.; Connor, T. R.; Loman, N. J.; Golubchik, T.; Martinez Nunez, R. T.; Bonsall, D.; Rambaut, A.; Snell, L. B.; Livett, R.; Ludden, C.; Corden, S.; Nastouli, E.; Nebbia, G.; Johnston, I.; Lythgoe, K.; Estee Torok, M.; Goodfellow, I. G.; Prieto, J. A.; Saeed, K.; Jackson, D. K.; Houlihan, C.; Frampton, D.; Hamilton, W. L.; Witney, A. A.; Bucca, G.; Pope, C. F.; Moore, C.; Thomson, E. C.; Harrison, E. M.; Smith, C. P.; Rogan, F.; Beckwith, S. M.; Murray, A.; Singleton, D.; Eastick, K.; Sheridan, L. A.; Randell, P.; Jackson, L. M.; Ariani, C. V.; Gonçalves, S.; Fairley, D. J.; Loose, M. W.; Watkins, J.; Moses, S.; Nicholls, S.; Bull, M.; Amato, R.; Smith, D. L.; Aanensen, D. M.; Barrett, J. C.; Aggarwal, D.; Shepherd, J. G.; Curran, M. D.; Parmar, S.; Parker, M. D.; Williams, C.; Glaysher, S.; Underwood, A. P.; Bashton, M.; Pacchiarini, N.; Loveson, K. F.; Byott, M.; Carabelli, A. M.; Templeton, K. E.; de Silva, T. I.; Wang, D.; Langford, C. F.; Sillitoe, J.; Gunson, R. N.; Cottrell, S.; O'Grady, J.; Kwiatkowski, D.; Lillie, P. J.; Cortes, N.; Moore, N.; Thomas, C.; Burns, P. J.; Mahungu, T. W.; Liggett, S.; Beckett, A. H.; Holden, M. T. G.; Levett, L. J.; Osman, H.; Hassan-Ibrahim, M. O.; Simpson, D. A.; Chand, M.; Gupta, R. K.; Darby, A. C.; Paterson, S.; Pybus, O. G.; Volz, E. M.; de Angelis, D.; Robertson, D. L.; Page, A. J.; Martincorena, I.; Aigrain, L.; Bassett, A. R.; Wong, N.; Taha, Y.; Erkiert, M. J.; Spencer Chapman, M. H.; Dewar, R.; McHugh, M. P.; Mookerjee, S.; Aplin, S.; Harvey, M.; Sass, T.; Umpleby, H.; Wheeler, H.; McKenna, J. P.; Warne, B.; Taylor, J. F.; Chaudhry, Y.; Izuagbe, R.; Jahun, A. S.; Young, G. R.; McMurray, C.; McCann, C. M.; Nelson, A.; Elliott, S.; Lowe, H.; Price, A.; Crown, M. R.; Rey, S.; Roy, S.; Temperton, B.; Shaaban, S.; Hesketh, A. R.; Laing, K. G.; Monahan, I. M.; Heaney, J.; Pelosi, E.; Silviera, S.; Wilson-Davies, E.; Fryer, H.; Adams, H.; du Plessis, L.; Johnson, R.; Harvey, W. T.; Hughes, J.; Orton, R. J.; Spurgin, L. G.; Bourgeois, Y.; Ruis, C.; O'Toole, Á, Gourtovaia, M.; Sanderson, T.; Fraser, C.; Edgeworth, J.; Breuer, J.; Michell, S. L.; Todd, J. A.; John, M.; Buck, D.; Gajee, K.; Kay, G. L.; Peacock, S. J.; Heyburn, D.; Kitchman, K.; McNally, A.; Pritchard, D. T.; Dervisevic, S.; Muir, P.; Robinson, E.; Vipond, B. B.; Ramadan, N. A.; Jeanes, C.; Weldon, D.; Catalan, J.; Jones, N.; da Silva Filipe, A.; Williams, C.; Fuchs, M.; Miskelly, J.; Jeffries, A. R.; Oliver, K.; Park, N. R.; Ash, A.; Koshy, C.; Barrow, M.; Buchan, S. L.; Mantzouratou, A.; Clark, G.; Holmes, C. W.; Campbell, S.; Davis, T.; Tan, N. K.; Brown, J. R.; Harris, K. A.; Kidd, S. P.; Grant, P. R.; Xu-McCrae, L.; Cox, A.; Madona, P.; Pond, M.; Randell, P. A.; Withell, K. T.; Williams, C.; Graham, C.; Denton-Smith, R.; Swindells, E.; Turnbull, R.; Sloan, T. J.; Bosworth, A.; Hutchings, S.; Pymont, H. M.; Casey, A.; Ratcliffe, L.; Jones, C. R.; Knight, B. A.; Haque, T.; Hart, J.; Irish-Tavares, D.; Witele, E.; Mower, C.; Watson, L. K.; Collins, J.; Eltringham, G.; Crudgington, D.; Macklin, B.; Iturriza-Gomara, M.; Lucaci, A. O.; McClure, P. C.; Carlile, M.; Holmes, N.; Moore, C.; Storey, N.; Rooke, S.; Yebra, G.; Craine, N.; Perry, M.; Alikhan, N. F.; Bridgett, S.; Cook, K. F.; Fearn, C.; Goudarzi, S.; Lyons, R. A.; Williams, T.; Haldenby, S. T.; Durham, J.; Leonard, S.; Davies, R. M.; Batra, R.; Blane, B.; Spyer, M. J.; Smith, P.; Yavus, M.; Williams, R. J.; Mahanama, A. I. K.; Samaraweera, B.; Girgis, S. T.; Hansford, S. E.; Green, A.; Beaver, C.; Bellis, K. L.; Dorman, M. J.; Kay, S.; Prestwood, L.; Rajatileka, S.; Quick, J.; Poplawski, R.; Reynolds, N.; Mack, A.; Morriss, A.; Whalley, T.; Patel, B.; Georgana, I.; Hosmillo, M.; Pinckert, M. L.; Stockton, J.; Henderson, J. H.; Hollis, A.; Stanley, W.; Yew, W. C.; Myers, R.; Thornton, A.; Adams, A.; Annett, T.; Asad, H.; Birchley, A.; Coombes, J.; Evans, J. M.; Fina, L.; Gatica-Wilcox, B.; Gilbert, L.; Graham, L.; Hey, J.; Hilvers, E.; Jones, S.; Jones, H.; Kumziene-Summerhayes, S.; McKerr, C.; Powell, J.; Pugh, G.; Taylor, S.; Trotter, A. J.; Williams, C. A.; Kermack, L. M.; Foulkes, B. H.; Gallis, M.; Hornsby, H. R.; Louka, S. F.; Pohare, M.; Wolverson, P.; Zhang, P.; MacIntyre-Cockett, G.; Trebes, A.; Moll, R. J.; Ferguson, L.; Goldstein, E. J.; Maclean, A.; Tomb, R.; Starinskij, I.; Thomson, L.; Southgate, J.; Kraemer, M. U. G.; Raghwani, J.; Zarebski, A. E.; Boyd, O.; Geidelberg, L.; Illingworth, C. J.; Jackson, C.; Pascall, D.; Vattipally, S.; Freeman, T. M.; Hsu, S. N.; Lindsey, B. B.; James, K.; Lewis, K.; Tonkin-Hill, G.; Tovar-Corona, J. M.; Cox, M.; Abudahab, K.; Menegazzo, M.; Taylor, B. E. W.; Yeats, C. A.; Mukaddas, A.; Wright, D. W.; de Oliveira Martins, L.; Colquhoun, R.; Hill, V.; Jackson, B.; McCrone, J. T.; Medd, N.; Scher, E.; Keatley, J. P.; Curran, T.; Morgan, S.; Maxwell, P.; Smith, K.; Eldirdiri, S.; Kenyon, A.; Holmes, A. H.; Price, J. R.; Wyatt, T.; Mather, A. E.; Skvortsov, T.; Hartley, J. A.; Guest, M.; Kitchen, C.; Merrick, I.; Munn, R.; Bertolusso, B.; Lynch, J.; Vernet, G.; Kirk, S.; Wastnedge, E.; Stanley, R.; Idle, G.; Bradley, D. T.; Poyner, J.; Mori, M.; Jones, O.; Wright, V.; Brooks, E.; Churcher, C. M.; Fragakis, M.; Galai, K.; Jermy, A.; Judges, S.; McManus, G. M.; Smith, K. S.; Westwick, E.; Attwood, S. W.; Bolt, F.; Davies, A.; De Lacy, E.; Downing, F.; Edwards, S.; Meadows, L.; Jeremiah, S.; Smith, N.; Foulser, L.; Charalampous, T.; Patel, A.; Berry, L.; Boswell, T.; Fleming, V. M.; Howson-Wells, H. C.; Joseph, A.; Khakh, M.; Lister, M. M.; Bird, P. W.; Fallon, K.; Helmer, T.; McMurray, C. L.; Odedra, M.; Shaw, J.; Tang, J. W.; Willford, N. J.; Blakey, V.; Raviprakash, V.; Sheriff, N.; Williams, L. A.; Feltwell, T.; Bedford, L.; Cargill, J. S.; Hughes, W.; Moore, J.; Stonehouse, S.; Atkinson, L.; Lee, J. C. D.; Shah, D.; Alcolea-Medina, A.; Ohemeng-Kumi, N.; Ramble, J.; Sehmi, J.; Williams, R.; Chatterton, W.; Pusok, M.; Everson, W.; Castigador, A.; Macnaughton, E.; El Bouzidi, K.; Lampejo, T.; Sudhanva, M.; Breen, C.; Sluga, G.; Ahmad, S. S. Y.; George, R. P.; Machin, N. W.; Binns, D.; James, V.; Blacow, R.; Coupland, L.; Smith, L.; Barton, E.; Padgett, D.; Scott, G.; Cross, A.; Mirfenderesky, M.; Greenaway, J.; Cole, K.; Clarke, P.; Duckworth, N.; Walsh, S.; Bicknell, K.; Impey, R.; Wyllie, S.; Hopes, R.; Bishop, C.; Chalker, V.; et al..
Embase;
Preprint in English | EMBASE | ID: ppcovidwho-326827

ABSTRACT

The Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases1-3. The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions4,5. Here we analyse 52,992 Delta genomes from England in combination with 93,649 global genomes to reconstruct the emergence of Delta, and quantify its introduction to and regional dissemination across England, in the context of changing travel and social restrictions. Through analysis of human movement, contact tracing, and virus genomic data, we find that the focus of geographic expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced >1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers from India reduced onward transmission from importations;however the transmission chains that later dominated the Delta wave in England had been already seeded before restrictions were introduced. In England, increasing inter-regional travel drove Delta's nationwide dissemination, with some cities receiving >2,000 observable lineage introductions from other regions. Subsequently, increased levels of local population mixing, not the number of importations, was associated with faster relative growth of Delta. Among US states, we find that regions that previously experienced large waves also had faster Delta growth rates, and a model including interactions between immunity and human behaviour could accurately predict the rise of Delta there. Delta's invasion dynamics depended on fine scale spatial heterogeneity in immunity and contact patterns and our findings will inform optimal spatial interventions to reduce transmission of current and future VOCs such as Omicron.

5.
Robson, S. C.; Connor, T. R.; Loman, N. J.; Golubchik, T.; Nunez, R. T. M.; Bonsall, D.; Rambaut, A.; Snell, L. B.; Livett, R.; Ludden, C.; Corden, S.; Nastouli, E.; Nebbia, G.; Johnston, I.; Lythgoe, K.; Torok, M. E.; Goodfellow, I. G.; Prieto, J. A.; Saeed, K.; Jackson, D. K.; Houlihan, C.; Frampton, D.; Hamilton, W. L.; Witney, A. A.; Bucca, G.; Pope, C. F.; Moore, C.; Thomson, E. C.; Harrison, E. M.; Smith, C. P.; Rogan, F.; Beckwith, S. M.; Murray, A.; Singleton, D.; Eastick, K.; Sheridan, L. A.; Randell, P.; Jackson, L. M.; Ariani, C. V.; Gonçalves, S.; Fairley, D. J.; Loose, M. W.; Watkins, J.; Moses, S.; Nicholls, S.; Bull, M.; Amato, R.; Smith, D. L.; Aanensen, D. M.; Barrett, J. C.; Aggarwal, D.; Shepherd, J. G.; Curran, M. D.; Parmar, S.; Parker, M. D.; Williams, C.; Glaysher, S.; Underwood, A. P.; Bashton, M.; Loveson, K. F.; Byott, M.; Pacchiarini, N.; Carabelli, A. M.; Templeton, K. E.; de Silva, T. I.; Wang, D.; Langford, C. F.; Sillitoe, J.; Gunson, R. N.; Cottrell, S.; O'Grady, J.; Kwiatkowski, D.; Lillie, P. J.; Cortes, N.; Moore, N.; Thomas, C.; Burns, P. J.; Mahungu, T. W.; Liggett, S.; Beckett, A. H.; Holden, M. T. G.; Levett, L. J.; Osman, H.; Hassan-Ibrahim, M. O.; Simpson, D. A.; Chand, M.; Gupta, R. K.; Darby, A. C.; Paterson, S.; Pybus, O. G.; Volz, E. M.; de Angelis, D.; Robertson, D. L.; Page, A. J.; Martincorena, I.; Aigrain, L.; Bassett, A. R.; Wong, N.; Taha, Y.; Erkiert, M. J.; Chapman, M. H. S.; Dewar, R.; McHugh, M. P.; Mookerjee, S.; Aplin, S.; Harvey, M.; Sass, T.; Umpleby, H.; Wheeler, H.; McKenna, J. P.; Warne, B.; Taylor, J. F.; Chaudhry, Y.; Izuagbe, R.; Jahun, A. S.; Young, G. R.; McMurray, C.; McCann, C. M.; Nelson, A.; Elliott, S.; Lowe, H.; Price, A.; Crown, M. R.; Rey, S.; Roy, S.; Temperton, B.; Shaaban, S.; Hesketh, A. R.; Laing, K. G.; Monahan, I. M.; Heaney, J.; Pelosi, E.; Silviera, S.; Wilson-Davies, E.; Adams, H.; du Plessis, L.; Johnson, R.; Harvey, W. T.; Hughes, J.; Orton, R. J.; Spurgin, L. G.; Bourgeois, Y.; Ruis, C.; O'Toole, Á, Gourtovaia, M.; Sanderson, T.; Fraser, C.; Edgeworth, J.; Breuer, J.; Michell, S. L.; Todd, J. A.; John, M.; Buck, D.; Gajee, K.; Kay, G. L.; Peacock, S. J.; Heyburn, D.; Kitchman, K.; McNally, A.; Pritchard, D. T.; Dervisevic, S.; Muir, P.; Robinson, E.; Vipond, B. B.; Ramadan, N. A.; Jeanes, C.; Weldon, D.; Catalan, J.; Jones, N.; da Silva Filipe, A.; Williams, C.; Fuchs, M.; Miskelly, J.; Jeffries, A. R.; Oliver, K.; Park, N. R.; Ash, A.; Koshy, C.; Barrow, M.; Buchan, S. L.; Mantzouratou, A.; Clark, G.; Holmes, C. W.; Campbell, S.; Davis, T.; Tan, N. K.; Brown, J. R.; Harris, K. A.; Kidd, S. P.; Grant, P. R.; Xu-McCrae, L.; Cox, A.; Madona, P.; Pond, M.; Randell, P. A.; Withell, K. T.; Williams, C.; Graham, C.; Denton-Smith, R.; Swindells, E.; Turnbull, R.; Sloan, T. J.; Bosworth, A.; Hutchings, S.; Pymont, H. M.; Casey, A.; Ratcliffe, L.; Jones, C. R.; Knight, B. A.; Haque, T.; Hart, J.; Irish-Tavares, D.; Witele, E.; Mower, C.; Watson, L. K.; Collins, J.; Eltringham, G.; Crudgington, D.; Macklin, B.; Iturriza-Gomara, M.; Lucaci, A. O.; McClure, P. C.; Carlile, M.; Holmes, N.; Moore, C.; Storey, N.; Rooke, S.; Yebra, G.; Craine, N.; Perry, M.; Fearn, N. C.; Goudarzi, S.; Lyons, R. A.; Williams, T.; Haldenby, S. T.; Durham, J.; Leonard, S.; Davies, R. M.; Batra, R.; Blane, B.; Spyer, M. J.; Smith, P.; Yavus, M.; Williams, R. J.; Mahanama, A. I. K.; Samaraweera, B.; Girgis, S. T.; Hansford, S. E.; Green, A.; Beaver, C.; Bellis, K. L.; Dorman, M. J.; Kay, S.; Prestwood, L.; Rajatileka, S.; Quick, J.; Poplawski, R.; Reynolds, N.; Mack, A.; Morriss, A.; Whalley, T.; Patel, B.; Georgana, I.; Hosmillo, M.; Pinckert, M. L.; Stockton, J.; Henderson, J. H.; Hollis, A.; Stanley, W.; Yew, W. C.; Myers, R.; Thornton, A.; Adams, A.; Annett, T.; Asad, H.; Birchley, A.; Coombes, J.; Evans, J. M.; Fina, L.; Gatica-Wilcox, B.; Gilbert, L.; Graham, L.; Hey, J.; Hilvers, E.; Jones, S.; Jones, H.; Kumziene-Summerhayes, S.; McKerr, C.; Powell, J.; Pugh, G.; Taylor, S.; Trotter, A. J.; Williams, C. A.; Kermack, L. M.; Foulkes, B. H.; Gallis, M.; Hornsby, H. R.; Louka, S. F.; Pohare, M.; Wolverson, P.; Zhang, P.; MacIntyre-Cockett, G.; Trebes, A.; Moll, R. J.; Ferguson, L.; Goldstein, E. J.; Maclean, A.; Tomb, R.; Starinskij, I.; Thomson, L.; Southgate, J.; Kraemer, M. U. G.; Raghwani, J.; Zarebski, A. E.; Boyd, O.; Geidelberg, L.; Illingworth, C. J.; Jackson, C.; Pascall, D.; Vattipally, S.; Freeman, T. M.; Hsu, S. N.; Lindsey, B. B.; James, K.; Lewis, K.; Tonkin-Hill, G.; Tovar-Corona, J. M.; Cox, M.; Abudahab, K.; Menegazzo, M.; Taylor, B. E. W.; Yeats, C. A.; Mukaddas, A.; Wright, D. W.; de Oliveira Martins, L.; Colquhoun, R.; Hill, V.; Jackson, B.; McCrone, J. T.; Medd, N.; Scher, E.; Keatley, J. P.; Curran, T.; Morgan, S.; Maxwell, P.; Smith, K.; Eldirdiri, S.; Kenyon, A.; Holmes, A. H.; Price, J. R.; Wyatt, T.; Mather, A. E.; Skvortsov, T.; Hartley, J. A.; Guest, M.; Kitchen, C.; Merrick, I.; Munn, R.; Bertolusso, B.; Lynch, J.; Vernet, G.; Kirk, S.; Wastnedge, E.; Stanley, R.; Idle, G.; Bradley, D. T.; Poyner, J.; Mori, M.; Jones, O.; Wright, V.; Brooks, E.; Churcher, C. M.; Fragakis, M.; Galai, K.; Jermy, A.; Judges, S.; McManus, G. M.; Smith, K. S.; Westwick, E.; Attwood, S. W.; Bolt, F.; Davies, A.; De Lacy, E.; Downing, F.; Edwards, S.; Meadows, L.; Jeremiah, S.; Smith, N.; Foulser, L.; Charalampous, T.; Patel, A.; Berry, L.; Boswell, T.; Fleming, V. M.; Howson-Wells, H. C.; Joseph, A.; Khakh, M.; Lister, M. M.; Bird, P. W.; Fallon, K.; Helmer, T.; McMurray, C. L.; Odedra, M.; Shaw, J.; Tang, J. W.; Willford, N. J.; Blakey, V.; Raviprakash, V.; Sheriff, N.; Williams, L. A.; Feltwell, T.; Bedford, L.; Cargill, J. S.; Hughes, W.; Moore, J.; Stonehouse, S.; Atkinson, L.; Lee, J. C. D.; Shah, D.; Alcolea-Medina, A.; Ohemeng-Kumi, N.; Ramble, J.; Sehmi, J.; Williams, R.; Chatterton, W.; Pusok, M.; Everson, W.; Castigador, A.; Macnaughton, E.; Bouzidi, K. El, Lampejo, T.; Sudhanva, M.; Breen, C.; Sluga, G.; Ahmad, S. S. Y.; George, R. P.; Machin, N. W.; Binns, D.; James, V.; Blacow, R.; Coupland, L.; Smith, L.; Barton, E.; Padgett, D.; Scott, G.; Cross, A.; Mirfenderesky, M.; Greenaway, J.; Cole, K.; Clarke, P.; Duckworth, N.; Walsh, S.; Bicknell, K.; Impey, R.; Wyllie, S.; Hopes, R.; Bishop, C.; Chalker, V.; Harrison, I.; Gifford, L.; Molnar, Z.; Auckland, C.; Evans, C.; Johnson, K.; Partridge, D. G.; Raza, M.; Baker, P.; Bonner, S.; Essex, S.; Murray, L. J.; Lawton, A. I.; Burton-Fanning, S.; Payne, B. A. I.; Waugh, S.; Gomes, A. N.; Kimuli, M.; Murray, D. R.; Ashfield, P.; Dobie, D.; Ashford, F.; Best, A.; Crawford, L.; Cumley, N.; Mayhew, M.; Megram, O.; Mirza, J.; Moles-Garcia, E.; Percival, B.; Driscoll, M.; Ensell, L.; Lowe, H. L.; Maftei, L.; Mondani, M.; Chaloner, N. J.; Cogger, B. J.; Easton, L. J.; Huckson, H.; Lewis, J.; Lowdon, S.; Malone, C. S.; Munemo, F.; Mutingwende, M.; et al..
Embase;
Preprint in English | EMBASE | ID: ppcovidwho-326811

ABSTRACT

The scale of data produced during the SARS-CoV-2 pandemic has been unprecedented, with more than 5 million sequences shared publicly at the time of writing. This wealth of sequence data provides important context for interpreting local outbreaks. However, placing sequences of interest into national and international context is difficult given the size of the global dataset. Often outbreak investigations and genomic surveillance efforts require running similar analyses again and again on the latest dataset and producing reports. We developed civet (cluster investigation and virus epidemiology tool) to aid these routine analyses and facilitate virus outbreak investigation and surveillance. Civet can place sequences of interest in the local context of background diversity, resolving the query into different 'catchments' and presenting the phylogenetic results alongside metadata in an interactive, distributable report. Civet can be used on a fine scale for clinical outbreak investigation, for local surveillance and cluster discovery, and to routinely summarise the virus diversity circulating on a national level. Civet reports have helped researchers and public health bodies feedback genomic information in the appropriate context within a timeframe that is useful for public health.

6.
MEDLINE;
Preprint in English | MEDLINE | ID: ppcovidwho-326590

ABSTRACT

Genome sequencing has been widely deployed to study the evolution of SARS-CoV-2 with more than 90,000 genome sequences uploaded to the GISAID database. We published a method for SARS-CoV-2 genome sequencing ( https://www.protocols.io/view/ncov-2019-sequencing-protocol-bbmuik6w ) online on January 22, 2020. This approach has rapidly become the most popular method for sequencing SARS-CoV-2 due to its simplicity and cost-effectiveness. Here we present improvements to the original protocol: i) an updated primer scheme with 22 additional primers to improve genome coverage, ii) a streamlined library preparation workflow which improves demultiplexing rate for up to 96 samples and reduces hands-on time by several hours and iii) cost savings which bring the reagent cost down to 10 per sample making it practical for individual labs to sequence thousands of SARS-CoV-2 genomes to support national and international genomic epidemiology efforts.

7.
MEDLINE;
Preprint in English | MEDLINE | ID: ppcovidwho-326567

ABSTRACT

Since its emergence and detection in Wuhan, China in late 2019, the novel coronavirus SARS-CoV-2 has spread to nearly every country around the world, resulting in hundreds of thousands of infections to date. The virus was first detected in the Pacific Northwest region of the United States in January, 2020, with subsequent COVID-19 outbreaks detected in all 50 states by early March. To uncover the sources of SARS-CoV-2 introductions and patterns of spread within the U.S., we sequenced nine viral genomes from early reported COVID-19 patients in Connecticut. Our phylogenetic analysis places the majority of these genomes with viruses sequenced from Washington state. By coupling our genomic data with domestic and international travel patterns, we show that early SARS-CoV-2 transmission in Connecticut was likely driven by domestic introductions. Moreover, the risk of domestic importation to Connecticut exceeded that of international importation by mid-March regardless of our estimated impacts of federal travel restrictions. This study provides evidence for widespread, sustained transmission of SARS-CoV-2 within the U.S. and highlights the critical need for local surveillance.

8.
Epidemiology and Infection ; 2021.
Article in English | Scopus | ID: covidwho-1527948

ABSTRACT

This study was endeavored to contribute in furthering our understanding of the molecular epidemiology of SARS-CoV-2 by sequencing and analyzing the first full-length genome sequences obtained from 48 COVID-19 patients in five districts in Western Serbia in the period April 2020-July 2020. SARS-CoV-2 sequences in Western Serbia distinguished from the Wuhan sequence in 128 SNPs in total. Phylogenetic structure of local SARS-CoV-2 isolates suggested existence of at least four distinct groups of SARS-CoV-2 strains in Western Serbia. The first group is the most similar to the strain from Italy. These isolates included two 20A sequences and fifteen to thirty 20B sequences that displayed a newly occurring set of four conjoined mutations. The second group is the most similar to the strain from France, carrying two mutations and belonged to 20A clade. The third group is the most similar to the strain from Switzerland carrying four co-occurring mutations and belonging to 20B clade. The fourth group is the most similar to another strain from France, displaying one mutation that gave rise to a single local isolate that belonged to 20A clade. © 2021 Cambridge University Press. All rights reserved.

9.
Christian Journal for Global Health ; 7(5):3-8, 2020.
Article in English | Scopus | ID: covidwho-1034357
SELECTION OF CITATIONS
SEARCH DETAIL