Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Total Environ ; 857(Pt 2): 159579, 2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2086714

ABSTRACT

As of 8 July 2022, the World Health Organization (WHO) have reported 1010 probable cases of acute hepatitis of unknown aetiology in children worldwide, including approximately 250 cases in the United Kingdom (UK). Clinical presentations have often been severe, with liver transplantation a frequent clinical outcome. Human adenovirus F41 (HAdV-F41) has been detected in most children with acute hepatitis, but its role in the pathogenesis of this infection has yet to be established. Wastewater-based epidemiology (WBE) has become a well-established tool for monitoring the community spread of SARS-CoV-2, as well as other pathogens and chemicals. In this study, we adopted a WBE approach to monitoring levels of HAdV-F40/41 in wastewater before and during an acute hepatitis outbreak in Northern Ireland. We report increasing detection of HAdV-F40/41 in wastewater, concomitant with increasing numbers of clinical cases. Amplicon whole genome sequencing further classified the wastewater-derived HAdV as belonging to the F41 genotype which in turn was homologous to clinically derived sequences. We propose that WBE has the potential to inform community surveillance of HAdV-F41 and can further contribute to the ongoing global discussion supporting HAdV-F41 involvement in acute hepatitis cases.

2.
J Clin Microbiol ; 60(4): e0240821, 2022 04 20.
Article in English | MEDLINE | ID: covidwho-1774932

ABSTRACT

Genome sequencing is a powerful tool for identifying SARS-CoV-2 variant lineages; however, there can be limitations due to sequence dropout when used to identify specific key mutations. Recently, ThermoFisher Scientific has developed genotyping assays to help bridge the gap between testing capacity and sequencing capability to generate real-time genotyping results based on specific variants. Over a 6-week period during the months of April and May 2021, we set out to assess the ThermoFisher TaqMan mutation panel genotyping assay, initially for three mutations of concern and then for an additional two mutations of concern, against SARS-CoV-2-positive clinical samples and the corresponding COVID-19 Genomics UK Consortium (COG-UK) sequencing data. We demonstrate that genotyping is a powerful in-depth technique for identifying specific mutations, is an excellent complement to genome sequencing, and has real clinical health value potential, allowing laboratories to report and take action on variants of concern much more quickly.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Mutation , SARS-CoV-2/genetics
3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-308600

ABSTRACT

Emerging and re-emerging viruses are a global health concern. Genome sequencing as an approach for monitoring circulating viruses is currently hampered by complex and expensive methods. Untargeted, metagenomic nanopore sequencing can provide genomic information to identify pathogens, prepare for or even prevent outbreaks. SMART (Switching Mechanism at the 5′ end of RNA Template) is a popular method for RNA-Seq but most current methods rely on oligo-dT priming to target polyadenylated mRNA molecules. We have developed two random primed SMART-Seq approaches, ‘SMART-9N’, and a version compatible with barcoded PCR primers available from Oxford Nanopore Technologies, ‘Rapid SMART-9N’, for the detection, characterization, and whole-genome sequencing of RNA viruses. The methods were developed using viral isolates, clinical samples, and compared to a gold-standard amplicon-based method. From a Zika virus isolate the SMART-9N approach recovered 10kb of the 10.8kb RNA genome in a single nanopore read. We also obtained full genome coverage at a high depth coverage using the Rapid SMART-9N, which takes only 10 minutes and costs up to 45% less than other methods. We found the limits of detection of these methods to be 6e00 focus forming units (FFU)/mL with 99.02% and 87.58% genome coverage for SMART-9N and Rapid SMART-9N respectively. Yellow fever virus plasma samples and SARS-CoV-2 nasopharyngeal samples previously confirmed by RT-qPCR with a broad range of Ct-values were selected for validation. Both methods produced greater genome coverage when compared to the multiplex PCR approach and we obtained the longest single read of this study (18.5 kb) with a SARS-CoV-2 clinical sample, 60% of the virus genome using the Rapid SMART-9N method. This work demonstrates that SMART-9N and Rapid SMART-9N are sensitive, low input, and long-read compatible alternatives for RNA virus detection and genome sequencing and Rapid SMART-9N improves the cost, time, and complexity of laboratory work.

4.
Technology, Mind, and Behavior ; 3(1):No Pagination Specified, 2022.
Article in English | APA PsycInfo | ID: covidwho-1627094

ABSTRACT

While a variety of learning technologies are presently available to facilitate student-to-student peer interactions and collaborative learning online, recent research suggests that students' opportunities to interact with their peers were significantly reduced following the abrupt transition to remote instruction due to coronavirus disease. This raises concerns because peer interaction is known to be a key ingredient in effective online learning environments, and during remote instruction, the primary connection between a student and their identity as a member of a college community would have been online courses. In this study, we investigate whether and how collaborative technologies supported peer interaction, and students' learning, during remote instruction. Specifically, we used results from a multicampus survey of students and instructors, as well as data from our online learning management system, to explore the use of collaborative tools at a large scale and their associations with student outcomes. Findings indicate that instructors, as was typical before the pandemic, generally favored individual learning activities over collaborative activities during campus closure. But in those situations where collaborative activities were present during remote instruction, triangulation analyses indicate that their use was related to improved performance as measured by instructors' survey responses, by students' performance in their courses, and by an increased sense of belonging among students. (PsycInfo Database Record (c) 2022 APA, all rights reserved)

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-292838

ABSTRACT

Genome sequencing is a powerful tool for identifying SARS-CoV-2 variant lineages, however there can be limitations due to sequence drop-out when used to identify specific key mutations. Recently, Thermo Fisher Scientific have developed genotyping assays to help bridge the gap between testing capacity and sequencing capability to generate real-time genotyping results based on specific variants. Over a 6-week period during the months of April and May 2021, we set out to assess the Thermo Fisher TaqMan Mutation Panel Genotyping Assay, initially for three mutations of concern and then an additional two mutations of concern, against SARS-CoV-2 positive clinical samples and the corresponding COG-UK sequencing data. We demonstrate that genotyping is a powerful in-depth technique for identifying specific mutations, an excellent complement to genome sequencing and has real clinical health value potential allowing laboratories to report and action variants of concern much quicker.

6.
Rev Inst Med Trop Sao Paulo ; 62: e30, 2020.
Article in English | MEDLINE | ID: covidwho-246727

ABSTRACT

We conducted the genome sequencing and analysis of the first confirmed COVID-19 infections in Brazil. Rapid sequencing coupled with phylogenetic analyses in the context of travel history corroborate multiple independent importations from Italy and local spread during the initial stage of COVID-19 transmission in Brazil.


Subject(s)
Betacoronavirus/genetics , Communicable Diseases, Imported/transmission , Coronavirus Infections/transmission , Pandemics , Pneumonia, Viral/transmission , Aged , Brazil/epidemiology , COVID-19 , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/virology , Coronavirus Infections/epidemiology , Humans , Middle Aged , Phylogeny , Pneumonia, Viral/epidemiology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2
7.
Cell ; 181(5): 990-996.e5, 2020 05 28.
Article in English | MEDLINE | ID: covidwho-60444

ABSTRACT

The novel coronavirus SARS-CoV-2 was first detected in the Pacific Northwest region of the United States in January 2020, with subsequent COVID-19 outbreaks detected in all 50 states by early March. To uncover the sources of SARS-CoV-2 introductions and patterns of spread within the United States, we sequenced nine viral genomes from early reported COVID-19 patients in Connecticut. Our phylogenetic analysis places the majority of these genomes with viruses sequenced from Washington state. By coupling our genomic data with domestic and international travel patterns, we show that early SARS-CoV-2 transmission in Connecticut was likely driven by domestic introductions. Moreover, the risk of domestic importation to Connecticut exceeded that of international importation by mid-March regardless of our estimated effects of federal travel restrictions. This study provides evidence of widespread sustained transmission of SARS-CoV-2 within the United States and highlights the critical need for local surveillance.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Travel , Betacoronavirus/isolation & purification , COVID-19 , Connecticut/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Epidemiological Monitoring , Humans , Likelihood Functions , Pandemics , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Travel/legislation & jurisprudence , United States/epidemiology , Washington/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL