Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Ultrasound J ; 14(1): 21, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1875024

ABSTRACT

BACKGROUND AND OBJECTIVES: Lung Ultrasound Score (LUS) identifies and monitors pneumonia by assigning increasing scores. However, it does not include parameters, such as inferior vena cava (IVC) diameter and index of collapse, diaphragmatic excursions and search for pleural and pericardial effusions. Therefore, we propose a new improved scoring system, termed "integrated" lung ultrasound score (i-LUS) which incorporates previously mentioned parameters that can help in prediction of disease severity and survival, choice of oxygenation mode/ventilation and assignment to subsequent areas of care in patients with COVID-19 pneumonia. METHODS: Upon admission at the sub-intensive section of the emergency medical department (SEMD), 143 consecutively examined COVID-19 patients underwent i-LUS together with all other routine analysis. A database for anamnestic information, laboratory data, gas analysis and i-LUS parameters was created and analyzed. RESULTS: Of 143 enrolled patients, 59.4% were male (mean age 71 years) and 40.6% female. (mean age 79 years: p = 0.005). Patients that survived at 1 month had i-LUS score of 16, which was lower than that of non-survivors (median 20; p = 0.005). Survivors had a higher PaO2/FiO2 (median 321.5) compared to non-survivors (median 229, p < 0.001). There was a correlation between i-LUS and PaO2/FiO2 ratio (rho:-0.4452; p < 0.001), PaO2/FiO2 and survival status (rho:-0.3452; p < 0.001), as well as i-LUS score and disease outcome (rho:0.24; p = 0.005). In non-survivors, the serum values of different significant COVID indicators were severely expressed. The i-LUS score was higher (median 20) in patients who required non-invasive ventilation (NIV) than in those treated only by oxygen therapy (median 15.42; p = 0.003). The odds ratio for death outcome was 1.08 (confidence interval 1.02-1.15) for each point increased. At 1-month follow-up, 65 patients (45.5%) died and 78 (54.5%) survived. Patients admitted to the high critical ward had higher i-LUS score than those admitted to the low critical one (p < 0.003). CONCLUSIONS: i-LUS could be used as a helpful clinical tool for early decision-making in patients with COVID-19 pneumonia.

2.
Biomedicines ; 9(9)2021 Sep 04.
Article in English | MEDLINE | ID: covidwho-1390533

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic has represented an unprecedented challenge for humankind from health, economic, and social viewpoints. In February 2020, Italy was the first western country to be deeply hit by the pandemic and suffered the highest case/fatality rate among western countries. Brand new anti-COVID-19 vaccines have been developed and made available in <1-year from the viral sequence publication. Patients with compromised immune systems, such as autoimmune-autoinflammatory disorders (AIAIDs), primary (PIDs) and secondary (SIDs) immunodeficiencies, have received careful attention for a long time regarding their capacity to safely respond to traditional vaccines. The Italian Immunological Societies, therefore, have promptly faced the issues of safety, immunogenicity, and efficacy/effectiveness of the innovative COVID-19 vaccines, as well as priority to vaccine access, in patients with AIADs, PIDs, and SIDs, by organizing an ad-hoc Task Force. Patients with AIADs, PIDs, and SIDs: (1) Do not present contraindications to COVID-19 vaccines if a mRNA vaccine is used and administered in a stabilized disease phase without active infection. (2) Should usually not discontinue immunosuppressive therapy, which may be modulated depending on the patient's clinical condition. (3) When eligible, should have a priority access to vaccination. In fact, immunizing these patients may have relevant social/health consequences, since these patients, if infected, may develop chronic infection, which prolongs viral spread and facilitates the emergence of viral variants.

3.
J Clin Med ; 10(16)2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1355000

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic has caused an enormous loss of lives. Various clinical trials of vaccines and drugs are being conducted worldwide; nevertheless, as of today, no effective drug exists for COVID-19. The identification of key genes and pathways in this disease may lead to finding potential drug targets and biomarkers. Here, we applied weighted gene co-expression network analysis and LIME as an explainable artificial intelligence algorithm to comprehensively characterize transcriptional changes in bronchial epithelium cells (primary human lung epithelium (NHBE) and transformed lung alveolar (A549) cells) during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our study detected a network that significantly correlated to the pathogenicity of COVID-19 infection based on identified hub genes in each cell line separately. The novel hub gene signature that was detected in our study, including PGLYRP4 and HEPHL1, may shed light on the pathogenesis of COVID-19, holding promise for future prognostic and therapeutic approaches. The enrichment analysis of hub genes showed that the most relevant biological process and KEGG pathways were the type I interferon signaling pathway, IL-17 signaling pathway, cytokine-mediated signaling pathway, and defense response to virus categories, all of which play significant roles in restricting viral infection. Moreover, according to the drug-target network, we identified 17 novel FDA-approved candidate drugs, which could potentially be used to treat COVID-19 patients through the regulation of four hub genes of the co-expression network. In conclusion, the aforementioned hub genes might play potential roles in translational medicine and might become promising therapeutic targets. Further in vitro and in vivo experimental studies are needed to evaluate the role of these hub genes in COVID-19.

4.
J Clin Med ; 10(13)2021 Jun 29.
Article in English | MEDLINE | ID: covidwho-1288931

ABSTRACT

BACKGROUND AND AIM: The review aimed to summarize advances in the topic of endocrine diseases and coronavirus disease 2019 (COVID-19). METHODS: Scientific and institutional websites and databases were searched and data were collected and organized, when plausible, to angle the discussion toward the following clinical issues. (1) Are patients with COVID-19 at higher risk of developing acute or late-onset endocrine diseases or dysfunction? (2) May the underlying endocrine diseases or dysfunctions be considered risk factors for poor prognosis once the infection has occurred? (3) Are there defined strategies to manage endocrine diseases despite pandemic-related constraints? Herein, the authors considered only relevant and more frequently observed endocrine diseases and disorders related to the hypothalamic-pituitary region, thyroid and parathyroid glands, calcium-phosphorus homeostasis and osteoporosis, adrenal glands, and gonads. Main. Data highlight the basis of some pathophysiological mechanisms and anatomical alterations of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-induced endocrine dysfunctions. Some conditions, such as adrenal insufficiency and cortisol excess, may be risk factors of worse clinical progression once the infection has occurred. These at-risk populations may require adequate education to avoid the SARS-CoV-2 infection and adequately manage medical therapy during the pandemic, even in emergencies. Endocrine disease management underwent a palpable restraint, especially procedures requiring obligate access to healthcare facilities for diagnostic and therapeutic purposes. Strategies of clinical triage to prioritize medical consultations, laboratory, instrumental evaluations, and digital telehealth solutions should be implemented to better deal with this probably long-term situation.

5.
Front Oncol ; 10: 572329, 2020.
Article in English | MEDLINE | ID: covidwho-1264350

ABSTRACT

The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19) in China, which spread to the rest of the world, led the World Health Organization to classify it as a global pandemic. COVID-19 belongs to the Bettacoronavirus genus of the Coronaviridae family, and it mainly spreads through the respiratory tract. Studies have now confirmed a human-to-human transmission as the primary pathway of spread. COVID-19 patients with a history of diseases such as respiratory system diseases, immune deficiency, diabetes, cardiovascular disease, and cancer are prone to adverse events (admission to the intensive care unit requiring invasive ventilation or even death). The current focus has been on the development of novel therapeutics, including antivirals, monoclonal antibodies, and vaccines. However, although there is undoubtedly an urgent need to identify effective treatment options against infection with COVID-19, it is equally important to clarify management protocols for the other significant diseases from which these patients may suffer, including cancer. This review summarizes the current evidence regarding the epidemiology, pathogenesis, and management of patients with COVID-19. It also aims to provide the reader with insights into COVID-19 in pregnant patients and those with cancer, outlining necessary precautions relevant to cancer patients. Finally, we provide the available evidence on the latest potent antiviral drugs and vaccines of COVID-19 and the ongoing drug trials.

6.
Antibiotics (Basel) ; 10(5)2021 May 09.
Article in English | MEDLINE | ID: covidwho-1241235

ABSTRACT

The antimicrobial resistance (AMR) phenomenon is an emerging global problem and is induced by overuse and misuse of antibiotics in medical practice. In total, 10% of antibiotic prescriptions are from dentists, usually to manage oro-dental pains and avoid postsurgical complications. Recent research and clinical evaluations highlight new therapeutical approaches with a reduction in dosages and number of antibiotic prescriptions and recommend focusing on an accurate diagnosis and improvement of oral health before dental treatments and in patients' daily lives. In this article, the most common clinical and operative situations in dental practice, such as endodontics, management of acute alveolar abscesses, extractive oral surgery, parodontology and implantology, are recognized and summarized, suggesting possible guidelines to reduce antibiotic prescription and consumption, maintaining high success rates and low complications rates. Additionally, the categories of patients requiring antibiotic administration for pre-existing conditions are recapitulated. To reduce AMR threat, it is important to establish protocols for treatment with antibiotics, to be used only in specific situations. Recent reviews demonstrate that, in dentistry, it is possible to minimize the use of antibiotics, thoroughly assessing patient's conditions and type of intervention, thus improving their efficacy and reducing the adverse effects and enhancing the modern concept of personalized medicine.

7.
J Clin Med ; 10(5)2021 Mar 04.
Article in English | MEDLINE | ID: covidwho-1124853

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) outbreak, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic. It is well-established that SARS-CoV-2 infection can lead to dysregulated immune responses. Arginase-1 (Arg1), which has a pivotal role in immune cells, can be expressed in most of the myeloid cells, e.g., neutrophils and macrophages. Arg1 has been associated with the suppression of antiviral immune responses. METHODS: Whole blood was taken from 21 COVID-19 patients and 21 healthy individuals, and after RNA extraction and complementary DNA (cDNA) synthesis, gene expression of Arg1 was measured by real-time PCR. RESULTS: The qPCR results showed that the expression of Arg1 was significantly increased in COVID-19 patients compared to healthy individuals (p < 0.01). The relative expression analysis demonstrated there were approximately 2.3 times increased Arg1 expression in the whole blood of COVID-19 patients. Furthermore, the receiver operating characteristic (ROC) analysis showed a considerable diagnostic value for Arg1 expression in COVID-19 (p = 0.0002 and AUC = 0.8401). CONCLUSION: Arg1 might be a promising marker in the pathogenesis of the disease, and it could be a valuable diagnostic tool.

8.
Curr Probl Cardiol ; 46(5): 100819, 2021 May.
Article in English | MEDLINE | ID: covidwho-1083060

ABSTRACT

OBJECTIVES AND METHODS: the current understanding of the interplay between cardiovascular (CV) risk and Covid-19 is grossly inadequate. CV risk-prediction models are used to identify and treat high risk populations and to communicate risk effectively. These tools are unexplored in Covid-19. The main objective is to evaluate the association between CV scoring systems and chest X ray (CXR) examination (in terms of severity of lung involvement) in 50 Italian Covid-19 patients. Results only the Framingham Risk Score (FRS) was applicable to all patients. The Atherosclerotic Cardiovascular Disease Score (ASCVD) was applicable to half. 62% of patients were classified as high risk according to FRS and 41% according to ASCVD. Patients who died had all a higher FRS compared to survivors. They were all hypertensive. FRS≥30 patients had a 9.7 higher probability of dying compared to patients with a lower FRS. We found a strong correlation between CXR severity and FRS and ASCVD (P < 0.001). High CV risk patients had consolidations more frequently. CXR severity was significantly associated with hypertension and diabetes. 71% of hypertensive patients' CXR and 88% of diabetic patients' CXR had consolidations. Patients with diabetes or hypertension had 8 times greater risk of having consolidations. CONCLUSIONS: High CV risk correlates with more severe CXR pattern and death. Diabetes and hypertension are associated with more severe CXR. FRS offers more predictive utility and fits best to our cohort. These findings may have implications for clinical practice and for the identification of high-risk groups to be targeted for the vaccine precedence.


Subject(s)
COVID-19/diagnostic imaging , Cardiovascular Diseases/diagnosis , Health Status Indicators , Radiography, Thoracic , Adult , Aged , COVID-19/mortality , COVID-19/therapy , Cardiovascular Diseases/mortality , Cardiovascular Diseases/therapy , Comorbidity , Diabetes Mellitus/diagnosis , Diabetes Mellitus/mortality , Female , Heart Disease Risk Factors , Humans , Hypertension/diagnosis , Hypertension/mortality , Italy , Male , Middle Aged , Predictive Value of Tests , Prognosis , Risk Assessment , Severity of Illness Index
9.
Front Med (Lausanne) ; 7: 625176, 2020.
Article in English | MEDLINE | ID: covidwho-1069728

ABSTRACT

Background: Timely assessment of COVID-19 severity is crucial for the rapid provision of appropriate treatments. Definitive criteria for the early identification of severe COVID-19 cases that require intensive care unit admission are lacking. Methods: This was a single-center, retrospective case-control study of 95 consecutive adults admitted to the intensive care unit (cases) or a medical ward (controls) for laboratory-confirmed COVID-19. Clinical data were collected and changes in laboratory test results were calculated between presentation at the emergency department and admission. Univariate and multivariable logistic regression was performed to calculate odds ratios for intensive care unit admission according to changes in laboratory variables. Results: Of the 95 adults with COVID-19, 25 were admitted to intensive care and 70 to a medical ward after a median 6 h stay in the emergency department. During this interval, neutrophil counts increased in cases and decreased in controls (median, 934 vs. -295 × 106/L; P = 0.006), while lymphocyte counts decreased in cases and increased in controls (median, -184 vs. 109 × 106/L; P < 0.001). In cases, the neutrophil-to-lymphocyte ratio increased 6-fold and the urea-to-creatinine ratio increased 20-fold during the emergency department stay, but these ratios did not change in controls (P < 0.001 for both comparisons). By multivariable logistic regression, short-term increases in the neutrophil-to-lymphocyte ratio (OR = 1.43; 95% CI, 1.16-1.76) and urea-to-creatinine ratio (OR = 1.72; 95% CI, 1.20-2.66) were independent predictors of intensive care unit admission. Conclusion: Short-time changes in neutrophil-to-lymphocyte ratio and urea-to-creatinine ratio emerged as stand-alone parameters able to identify patients with aggressive disease at an early stage.

11.
Mediators Inflamm ; 2020: 7527953, 2020.
Article in English | MEDLINE | ID: covidwho-656906

ABSTRACT

COVID-19 is a pandemic disease caused by the new coronavirus SARS-CoV-2 that mostly affects the respiratory system. The consequent inflammation is not able to clear viruses. The persistent excessive inflammatory response can build up a clinical picture that is very difficult to manage and potentially fatal. Modulating the immune response plays a key role in fighting the disease. One of the main defence systems is the activation of neutrophils that release neutrophil extracellular traps (NETs) under the stimulus of autophagy. Various molecules can induce NETosis and autophagy; some potent activators are damage-associated molecular patterns (DAMPs) and, in particular, the high-mobility group box 1 (HMGB1). This molecule is released by damaged lung cells and can induce a robust innate immunity response. The increase in HMGB1 and NETosis could lead to sustained inflammation due to SARS-CoV-2 infection. Therefore, blocking these molecules might be useful in COVID-19 treatment and should be further studied in the context of targeted therapy.


Subject(s)
Alarmins/immunology , Betacoronavirus , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Extracellular Traps/immunology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Alarmins/antagonists & inhibitors , Autophagy/immunology , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/pathology , Extracellular Traps/drug effects , HMGB1 Protein/antagonists & inhibitors , HMGB1 Protein/immunology , Host Microbial Interactions/immunology , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/immunology , Lung/immunology , Lung/pathology , Pandemics , Pneumonia, Viral/pathology , SARS-CoV-2
12.
Int J Mol Sci ; 21(9)2020 May 10.
Article in English | MEDLINE | ID: covidwho-209969

ABSTRACT

The current pandemic coronavirus, SARS-CoV-2, is a global health emergency because of its highly contagious nature, the great number of patients requiring intensive care therapy, and the high fatality rate. In the absence of specific antiviral drugs, passive prophylaxis, or a vaccine, the treatment aim in these patients is to prevent the potent virus-induced inflammatory stimuli from leading to the acute respiratory distress syndrome (ARDS), which has a severe prognosis. Here, the mechanism of action and the rationale for employing immunological strategies, which range from traditional chemically synthesized drugs, anti-cytokine antibodies, human immunoglobulin for intravenous use, to vaccines, are reviewed.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/immunology , Coronavirus Infections/therapy , Immunotherapy , Pneumonia, Viral/immunology , Pneumonia, Viral/therapy , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/pathology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/therapy , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/therapy , Pandemics , Pneumonia, Viral/pathology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL