Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Commun ; 12(1): 6266, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1493105

ABSTRACT

During 2020, Victoria was the Australian state hardest hit by COVID-19, but was successful in controlling its second wave through aggressive policy interventions. We calibrated a detailed compartmental model of Victoria's second wave to multiple geographically-structured epidemic time-series indicators. We achieved a good fit overall and for individual health services through a combination of time-varying processes, including case detection, population mobility, school closures, physical distancing and face covering usage. Estimates of the risk of death in those aged ≥75 and of hospitalisation were higher than international estimates, reflecting concentration of cases in high-risk settings. We estimated significant effects for each of the calibrated time-varying processes, with estimates for the individual-level effect of physical distancing of 37.4% (95%CrI 7.2-56.4%) and of face coverings of 45.9% (95%CrI 32.9-55.6%). That the multi-faceted interventions led to the dramatic reversal in the epidemic trajectory is supported by our results, with face coverings likely particularly important.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Epidemics , Adolescent , Adult , COVID-19/transmission , Hospitalization , Humans , Middle Aged , Models, Theoretical , Physical Distancing , SARS-CoV-2 , Schools , Victoria , Young Adult
2.
Epidemics ; 37: 100517, 2021 12.
Article in English | MEDLINE | ID: covidwho-1482585

ABSTRACT

INTRODUCTION: As of 3rd June 2021, Malaysia is experiencing a resurgence of COVID-19 cases. In response, the federal government has implemented various non-pharmaceutical interventions (NPIs) under a series of Movement Control Orders and, more recently, a vaccination campaign to regain epidemic control. In this study, we assessed the potential for the vaccination campaign to control the epidemic in Malaysia and four high-burden regions of interest, under various public health response scenarios. METHODS: A modified susceptible-exposed-infectious-recovered compartmental model was developed that included two sequential incubation and infectious periods, with stratification by clinical state. The model was further stratified by age and incorporated population mobility to capture NPIs and micro-distancing (behaviour changes not captured through population mobility). Emerging variants of concern (VoC) were included as an additional strain competing with the existing wild-type strain. Several scenarios that included different vaccination strategies (i.e. vaccines that reduce disease severity and/or prevent infection, vaccination coverage) and mobility restrictions were implemented. RESULTS: The national model and the regional models all fit well to notification data but underestimated ICU occupancy and deaths in recent weeks, which may be attributable to increased severity of VoC or saturation of case detection. However, the true case detection proportion showed wide credible intervals, highlighting incomplete understanding of the true epidemic size. The scenario projections suggested that under current vaccination rates complete relaxation of all NPIs would trigger a major epidemic. The results emphasise the importance of micro-distancing, maintaining mobility restrictions during vaccination roll-out and accelerating the pace of vaccination for future control. Malaysia is particularly susceptible to a major COVID-19 resurgence resulting from its limited population immunity due to the country's historical success in maintaining control throughout much of 2020.


Subject(s)
COVID-19 , Humans , Malaysia/epidemiology , SARS-CoV-2 , Vaccination
3.
Med J Aust ; 215(9): 427-432, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1389702

ABSTRACT

OBJECTIVES: To analyse the outcomes of COVID-19 vaccination by vaccine type, age group eligibility, vaccination strategy, and population coverage. DESIGN: Epidemiologic modelling to assess the final size of a COVID-19 epidemic in Australia, with vaccination program (Pfizer, AstraZeneca, mixed), vaccination strategy (vulnerable first, transmitters first, untargeted), age group eligibility threshold (5 or 15 years), population coverage, and pre-vaccination effective reproduction number ( R eff v ¯ ) for the SARS-CoV-2 Delta variant as factors. MAIN OUTCOME MEASURES: Numbers of SARS-CoV-2 infections; cumulative hospitalisations, deaths, and years of life lost. RESULTS: Assuming R eff v ¯ = 5, the current mixed vaccination program (vaccinating people aged 60 or more with the AstraZeneca vaccine and people under 60 with the Pfizer vaccine) will not achieve herd protection unless population vaccination coverage reaches 85% by lowering the vaccination eligibility age to 5 years. At R eff v ¯ = 3, the mixed program could achieve herd protection at 60-70% population coverage and without vaccinating 5-15-year-old children. At R eff v ¯ = 7, herd protection is unlikely to be achieved with currently available vaccines, but they would still reduce the number of COVID-19-related deaths by 85%. CONCLUSION: Vaccinating vulnerable people first is the optimal policy when population vaccination coverage is low, but vaccinating more socially active people becomes more important as the R eff v ¯ declines and vaccination coverage increases. Assuming the most plausible R eff v ¯ of 5, vaccinating more than 85% of the population, including children, would be needed to achieve herd protection. Even without herd protection, vaccines are highly effective in reducing the number of deaths.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Herd , Mass Vaccination/organization & administration , SARS-CoV-2/pathogenicity , Adolescent , Adult , Age Factors , Australia/epidemiology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Child , Child, Preschool , Computer Simulation , Humans , Immunogenicity, Vaccine , Mass Vaccination/statistics & numerical data , Middle Aged , Models, Immunological , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccination Coverage/organization & administration , Vaccination Coverage/statistics & numerical data , Young Adult
4.
Paediatr Respir Rev ; 39: 32-39, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1322314

ABSTRACT

Mathematical modelling has played a pivotal role in understanding the epidemiology of and guiding public health responses to the ongoing coronavirus disease of 2019 (COVID-19) pandemic. Here, we review the role of epidemiological models in understanding evolving epidemic characteristics, including the effects of vaccination and Variants of Concern (VoC). We highlight ways in which models continue to provide important insights, including (1) calculating the herd immunity threshold and evaluating its limitations; (2) verifying that nascent vaccines can prevent severe disease, infection, and transmission but may be less efficacious against VoC; (3) determining optimal vaccine allocation strategies under efficacy and supply constraints; and (4) determining that VoC are more transmissible and lethal than previously circulating strains, and that immune escape may jeopardize vaccine-induced herd immunity. Finally, we explore how models can help us anticipate and prepare for future stages of COVID-19 epidemiology (and that of other diseases) through forecasts and scenario projections, given current uncertainties and data limitations.


Subject(s)
COVID-19 Vaccines/supply & distribution , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/organization & administration , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Humans , Models, Theoretical , Pandemics/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2
5.
Lancet Reg Health West Pac ; 14: 100211, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1309328

ABSTRACT

BACKGROUND: COVID-19 initially caused less severe outbreaks in many low- and middle-income countries (LMIC) compared with many high-income countries, possibly because of differing demographics, socioeconomics, surveillance, and policy responses. Here, we investigate the role of multiple factors on COVID-19 dynamics in the Philippines, a LMIC that has had a relatively severe COVID-19 outbreak. METHODS: We applied an age-structured compartmental model that incorporated time-varying mobility, testing, and personal protective behaviors (through a "Minimum Health Standards" policy, MHS) to represent the first wave of the Philippines COVID-19 epidemic nationally and for three highly affected regions (Calabarzon, Central Visayas, and the National Capital Region). We estimated effects of control measures, key epidemiological parameters, and interventions. FINDINGS: Population age structure, contact rates, mobility, testing, and MHS were sufficient to explain the Philippines epidemic based on the good fit between modelled and reported cases, hospitalisations, and deaths. The model indicated that MHS reduced the probability of transmission per contact by 13-27%. The February 2021 case detection rate was estimated at ~8%, population recovered at ~9%, and scenario projections indicated high sensitivity to MHS adherence. INTERPRETATION: COVID-19 dynamics in the Philippines are driven by age, contact structure, mobility, and MHS adherence. Continued compliance with low-cost MHS should help the Philippines control the epidemic until vaccines are widely distributed, but disease resurgence may be occurring due to a combination of low population immunity and detection rates and new variants of concern.

6.
J Med Ethics ; 47(8): 553-562, 2021 08.
Article in English | MEDLINE | ID: covidwho-1249483

ABSTRACT

Liberty-restricting measures have been implemented for centuries to limit the spread of infectious diseases. This article considers if and when it may be ethically acceptable to impose selective liberty-restricting measures in order to reduce the negative impacts of a pandemic by preventing particularly vulnerable groups of the community from contracting the disease. We argue that the commonly accepted explanation-that liberty restrictions may be justified to prevent harm to others when this is the least restrictive option-fails to adequately accommodate the complexity of the issue or the difficult choices that must be made, as illustrated by the COVID-19 pandemic. We introduce a dualist consequentialist approach, weighing utility at both a population and individual level, which may provide a better framework for considering the justification for liberty restrictions. While liberty-restricting measures may be justified on the basis of significant benefits to the population and small costs for overall utility to individuals, the question of whether it is acceptable to discriminate should be considered separately. This is because the consequentialist approach does not adequately account for the value of equality. This value may be protected through the application of an additional proportionality test. An algorithm for making decisions is proposed. Ultimately whether selective liberty-restricting measures are imposed will depend on a range of factors, including how widespread infection is in the community, the level of risk and harm a society is willing to accept, and the efficacy and cost of other mitigation options.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control , Ethical Theory , Freedom , Pandemics , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Pandemics/prevention & control , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL