Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-333041

ABSTRACT

Abstract: Patients with COVID-19 can have a variety of neurological symptoms, but the pathomechanism of CNS involvement in COVD-19 remains unclear. While routine cerebrospinal fluid (CSF) analyses in patients with neurological manifestations of COVID-19 generally show no or only mild inflammation, more detailed data on inflammatory mediators in the CSF of patients with COVID-19 are scarce. Here, we used mass spectrometry to study the proteome, Enzym-linkend immunoassays, semiquantitative cytokine arrays, autoantibody screening, and RNA profiling to study the neuroinflammation. We study the inflammatory response in paired CSF and serum samples of patients with COVID-19 (n=38). Patients with herpes simplex virus encephalitis (HSVE, n=10) and patients with non-inflammatory, non-neurodegenerative neurological diseases (n=28) served as controls. Proteomics on single protein level and subsequent pathway analysis showed similar yet strongly attenuated inflammatory changes in the CSF of COVID-19 patients compared to HSVE patients. CSF/serum indices of interleukin-6, interleukin-16 and CXCL10 together point at an origin from these inflammatory proteins from outside the central nervous system. When stratifying COVID-19 patients into those with and without bacterial superinfection as indicated by elevated procalcitonin levels, inflammatory markers were significantly higher in those with concomitant bacterial superinfection. RNA sequencing in the CSF revealed 101 linear RNAs comprising messenger RNAs, micro RNAs and t-RNA fragments being significantly differentially expressed in COVID-19 than in HSVE or controls. Our findings may explain the absence of signs of intrathecal inflammation upon routine CSF testing despite the presence of SARS-CoV2 infection-associated neurological symptoms. The relevance of blood-derived mediators of inflammation in the CSF for neurological post-COVID-19 symptoms deserves further investigation.

2.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-328813

ABSTRACT

Background: Classification of disease severity is crucial for the management of COVID-19. Several studies have shown that individual proteins can be used to classify the severity of COVID-19. Here, we aimed to investigate whether integrating the four types of protein context data, namely, protein complexes, stoichiometric ratios, pathways and network degrees will improve the severity classification of COVID-19. Methods: : A SWATH-based proteomic data set of 54 sera samples from 40 COVID-19 patients was employed as the training cohort. Results: : Machine learning prioritized two complexes, one stoichiometric ratio, five pathways, twelve proteins and five network degrees. A model based on these 25 features led to effective classification of severe cases with an AUC of 0.965, outperforming the models with proteins only. Complement component C9, transthyretin (TTR) and TTR-RBP complex, the stoichiometric ratio of SAA2/ YLPM1, and the network extent of SIRT7 and A2M were highlighted in this classifier. This classifier was further validated with a TMT-based proteomic data set from the same cohort and an independent SWATH-based proteomic data set from Germany, reaching an AUC of 0.900 and 0.908, respectively. Machine learning models integrating protein context information achieved higher AUCs than models with only one feature type. Conclusion: Our results show that the integration of protein context including protein complexes, stoichiometric ratios, pathways, network degrees, and proteins improves phenotype prediction.

3.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327137

ABSTRACT

Hyperinflammation, coagulopathy and immune dysfunction are prominent in patients with severe infections. Extracellular chromatin clearance by plasma DNases suppresses such pathologies in mice but whether severe infection interferes with these pathways is unclear. Here, we show that patients with severe SARS-CoV-2 infection or microbial sepsis exhibit low extracellular DNA clearance capacity associated with the release of the DNase inhibitor actin. Unlike naked DNA degradation (DNase), neutrophil extracellular trap degradation (NETase) was insensitive to G-actin, indicating distinct underlying mechanisms. Functional proteomic profiling of severely ill SARS-CoV-2 patient plasma revealed that patients with high NETase and DNase activities exhibited 18-fold higher survival compared to patients with low activity proteomic profiles. Remarkably, low DNA clearance capacity was also prominent in healthy individuals with chronic inflammation, suggesting that pre-existing inflammatory conditions may increase the risk for mortality upon infection. Hence, functional proteomic profiling illustrates that non-redundant DNA clearance activities protect critically ill patients from mortality, uncovering protein combinations that can accurately predict mortality in critically ill patients.

4.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318102

ABSTRACT

In COVID-19, immune responses are key in determining disease severity. However, cellular mechanisms at the onset of inflammatory lung injury in SARS-CoV-2 infection, particularly involving endothelial cells, remain ill-defined. Using Syrian hamsters as model for moderate COVID-19, we conducted a detailed longitudinal analysis of systemic and pulmonary cellular responses, and corroborated it with datasets from COVID-19 patients. Monocyte-derived macrophages in lungs exerted the earliest and strongest transcriptional response to infection, including induction of pro-inflammatory genes, while epithelial cells showed weak activation. Without evidence for productive infection, endothelial cells reacted, depending on cell subtypes, by strong and early expression of anti-viral, pro-inflammatory, and T cell recruiting genes. Recruitment of cytotoxic T cells as well as emergence of IgM antibodies preceded viral clearance at day 5 post infection. Investigating SARS-CoV-2 infected Syrian hamsters can thus identify cell type-specific effector functions, provide detailed insights into pathomechanisms of COVID-19, and inform therapeutic strategies.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-296283

ABSTRACT

Global healthcare systems continue to be challenged by the COVID-19 pandemic, and there is a need for clinical assays that can both help to optimize resource allocation and accelerate the development and evaluation of new therapies. Here, we present a multiplex proteomic panel assay for the assessment of disease severity and outcome prediction in COVID-19. The assay quantifies 50 peptides derived from 30 COVID-19 severity markers in a single measurement using analytical flow rate liquid chromatography and multiple reaction monitoring (LC-MRM), on equipment that is broadly available in routine and regulated analytical laboratories. We demonstrate accurate classification of COVID-19 severity in patients from two cohorts. Furthermore, the assay outperforms established risk assessments such as SOFA and APACHE II in predicting survival in a longitudinal COVID-19 cohort. The prognostic value implies its use for support of clinical decisions in settings with overstrained healthcare resources e.g. to optimally allocate resources to severely ill individuals with high chance of survival. It can furthermore be helpful for monitoring of novel therapies in clinical trials.

6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-293571

ABSTRACT

Global healthcare systems continue to be challenged by the COVID-19 pandemic, and there is a need for clinical assays that can both help to optimize resource allocation and accelerate the development and evaluation of new therapies. Here, we present a multiplex proteomic panel assay for the assessment of disease severity and outcome prediction in COVID-19. The assay quantifies 50 peptides derived from 30 COVID-19 severity markers in a single measurement using analytical flow rate liquid chromatography and multiple reaction monitoring (LC-MRM), on equipment that is broadly available in routine and regulated analytical laboratories. We demonstrate accurate classification of COVID-19 severity in patients from two cohorts. Furthermore, the assay outperforms established risk assessments such as SOFA and APACHE II in predicting survival in a longitudinal COVID-19 cohort. The prognostic value implies its use for support of clinical decisions in settings with overstrained healthcare resources e.g. to optimally allocate resources to severely ill individuals with high chance of survival. It can furthermore be helpful for monitoring of novel therapies in clinical trials.

7.
Non-conventional in English | MEDLINE, Grey literature | ID: grc-750477

ABSTRACT

Strategies to develop therapeutics for SARS-CoV-2 infection may be informed by experimental identification of viral-host protein interactions in cellular assays and measurement of host response proteins in COVID-19 patients. Identification of genetic variants that influence the level or activity of these proteins in the host could enable rapid 'in silico' assessment in human genetic studies of their causal relevance as molecular targets for new or repurposed drugs to treat COVID-19. We integrated large-scale genomic and aptamer-based plasma proteomic data from 10,708 individuals to characterize the genetic architecture of 179 host proteins reported to interact with SARS-CoV-2 proteins or to participate in the host response to COVID-19. We identified 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links, evidence that putative viral interaction partners such as MARK3 affect immune response, and establish the first link between a recently reported variant for respiratory failure of COVID-19 patients at the ABO locus and hypercoagulation, i.e. maladaptive host response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and dynamic and detailed interrogation of results is facilitated through an interactive webserver ( https://omicscience.org/apps/covidpgwas/ ).

8.
Nature ; 599(7884): 283-289, 2021 11.
Article in English | MEDLINE | ID: covidwho-1404888

ABSTRACT

Derailed cytokine and immune cell networks account for the organ damage and the clinical severity of COVID-19 (refs. 1-4). Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and is accompanied by a senescence-associated secretory phenotype (SASP), which comprises pro-inflammatory cytokines, extracellular-matrix-active factors and pro-coagulatory mediators5-7. Patients with COVID-19 displayed markers of senescence in their airway mucosa in situ and increased serum levels of SASP factors. In vitro assays demonstrated macrophage activation with SASP-reminiscent secretion, complement lysis and SASP-amplifying secondary senescence of endothelial cells, which mirrored hallmark features of COVID-19 such as macrophage and neutrophil infiltration, endothelial damage and widespread thrombosis in affected lung tissue1,8,9. Moreover, supernatant from VIS cells, including SARS-CoV-2-induced senescence, induced neutrophil extracellular trap formation and activation of platelets and the clotting cascade. Senolytics such as navitoclax and a combination of dasatinib plus quercetin selectively eliminated VIS cells, mitigated COVID-19-reminiscent lung disease and reduced inflammation in SARS-CoV-2-infected hamsters and mice. Our findings mark VIS as a pathogenic trigger of COVID-19-related cytokine escalation and organ damage, and suggest that senolytic targeting of virus-infected cells is a treatment option against SARS-CoV-2 and perhaps other viral infections.


Subject(s)
COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Cellular Senescence/drug effects , Molecular Targeted Therapy , SARS-CoV-2/pathogenicity , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Animals , COVID-19/complications , Cell Line , Cricetinae , Dasatinib/pharmacology , Dasatinib/therapeutic use , Disease Models, Animal , Female , Humans , Male , Mice , Quercetin/pharmacology , Quercetin/therapeutic use , SARS-CoV-2/drug effects , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Thrombosis/complications , Thrombosis/immunology , Thrombosis/metabolism
10.
Nat Commun ; 12(1): 4869, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1354100

ABSTRACT

In COVID-19, immune responses are key in determining disease severity. However, cellular mechanisms at the onset of inflammatory lung injury in SARS-CoV-2 infection, particularly involving endothelial cells, remain ill-defined. Using Syrian hamsters as a model for moderate COVID-19, we conduct a detailed longitudinal analysis of systemic and pulmonary cellular responses, and corroborate it with datasets from COVID-19 patients. Monocyte-derived macrophages in lungs exert the earliest and strongest transcriptional response to infection, including induction of pro-inflammatory genes, while epithelial cells show weak alterations. Without evidence for productive infection, endothelial cells react, depending on cell subtypes, by strong and early expression of anti-viral, pro-inflammatory, and T cell recruiting genes. Recruitment of cytotoxic T cells as well as emergence of IgM antibodies precede viral clearance at day 5 post infection. Investigating SARS-CoV-2 infected Syrian hamsters thus identifies cell type-specific effector functions, providing detailed insights into pathomechanisms of COVID-19 and informing therapeutic strategies.


Subject(s)
COVID-19/immunology , Disease Models, Animal , Alveolar Epithelial Cells/immunology , Animals , Cricetinae , Cytokines/genetics , Cytokines/immunology , Endothelial Cells/immunology , Humans , Immunoglobulin M/immunology , Inflammation , Lung/immunology , Macrophages/immunology , Mesocricetus , Monocytes/immunology , SARS-CoV-2/immunology , Signal Transduction , T-Lymphocytes, Cytotoxic/immunology , Toll-Like Receptors/immunology
11.
Life Sci Alliance ; 4(9)2021 09.
Article in English | MEDLINE | ID: covidwho-1298278

ABSTRACT

Here, we recorded serum proteome profiles of 33 severe COVID-19 patients admitted to respiratory and intensive care units because of respiratory failure. We received, for most patients, blood samples just after admission and at two more later time points. With the aim to predict treatment outcome, we focused on serum proteins different in abundance between the group of survivors and non-survivors. We observed that a small panel of about a dozen proteins were significantly different in abundance between these two groups. The four structurally and functionally related type-3 cystatins AHSG, FETUB, histidine-rich glycoprotein, and KNG1 were all more abundant in the survivors. The family of inter-α-trypsin inhibitors, ITIH1, ITIH2, ITIH3, and ITIH4, were all found to be differentially abundant in between survivors and non-survivors, whereby ITIH1 and ITIH2 were more abundant in the survivor group and ITIH3 and ITIH4 more abundant in the non-survivors. ITIH1/ITIH2 and ITIH3/ITIH4 also showed opposite trends in protein abundance during disease progression. We defined an optimal panel of nine proteins for mortality risk assessment. The prediction power of this mortality risk panel was evaluated against two recent COVID-19 serum proteomics studies on independent cohorts measured in other laboratories in different countries and observed to perform very well in predicting mortality also in these cohorts. This panel may not be unique for COVID-19 as some of the proteins in the panel have previously been annotated as mortality markers in aging and in other diseases caused by different pathogens, including bacteria.


Subject(s)
COVID-19/blood , COVID-19/mortality , Proteome/metabolism , Severity of Illness Index , Aged , COVID-19/virology , Cohort Studies , Female , Hospitalization , Humans , Immunoglobulins/blood , Male , SARS-CoV-2/physiology , Survivors
12.
Nat Biotechnol ; 39(7): 846-854, 2021 07.
Article in English | MEDLINE | ID: covidwho-1152861

ABSTRACT

Accurate quantification of the proteome remains challenging for large sample series and longitudinal experiments. We report a data-independent acquisition method, Scanning SWATH, that accelerates mass spectrometric (MS) duty cycles, yielding quantitative proteomes in combination with short gradients and high-flow (800 µl min-1) chromatography. Exploiting a continuous movement of the precursor isolation window to assign precursor masses to tandem mass spectrometry (MS/MS) fragment traces, Scanning SWATH increases precursor identifications by ~70% compared to conventional data-independent acquisition (DIA) methods on 0.5-5-min chromatographic gradients. We demonstrate the application of ultra-fast proteomics in drug mode-of-action screening and plasma proteomics. Scanning SWATH proteomes capture the mode of action of fungistatic azoles and statins. Moreover, we confirm 43 and identify 11 new plasma proteome biomarkers of COVID-19 severity, advancing patient classification and biomarker discovery. Thus, our results demonstrate a substantial acceleration and increased depth in fast proteomic experiments that facilitate proteomic drug screens and clinical studies.


Subject(s)
Proteomics/methods , Tandem Mass Spectrometry , Arabidopsis/metabolism , Biomarkers/metabolism , COVID-19/blood , COVID-19/diagnosis , Cell Line , Humans , Peptides/analysis , Proteome/analysis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Severity of Illness Index
13.
Nat Commun ; 11(1): 6397, 2020 12 16.
Article in English | MEDLINE | ID: covidwho-1023894

ABSTRACT

Understanding the genetic architecture of host proteins interacting with SARS-CoV-2 or mediating the maladaptive host response to COVID-19 can help to identify new or repurpose existing drugs targeting those proteins. We present a genetic discovery study of 179 such host proteins among 10,708 individuals using an aptamer-based technique. We identify 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links and evidence that putative viral interaction partners such as MARK3 affect immune response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and detailed interrogation of results is facilitated through an interactive webserver ( https://omicscience.org/apps/covidpgwas/ ).


Subject(s)
COVID-19/genetics , COVID-19/virology , Host-Pathogen Interactions/genetics , Proteins/genetics , SARS-CoV-2/physiology , ABO Blood-Group System/metabolism , Aptamers, Peptide/blood , Aptamers, Peptide/metabolism , Blood Coagulation , Drug Delivery Systems , Female , Gene Expression Regulation , Host-Derived Cellular Factors/metabolism , Humans , Internet , Male , Middle Aged , Quantitative Trait Loci/genetics
14.
bioRxiv ; 2020 Jul 01.
Article in English | MEDLINE | ID: covidwho-636928

ABSTRACT

Strategies to develop therapeutics for SARS-CoV-2 infection may be informed by experimental identification of viral-host protein interactions in cellular assays and measurement of host response proteins in COVID-19 patients. Identification of genetic variants that influence the level or activity of these proteins in the host could enable rapid 'in silico' assessment in human genetic studies of their causal relevance as molecular targets for new or repurposed drugs to treat COVID-19. We integrated large-scale genomic and aptamer-based plasma proteomic data from 10,708 individuals to characterize the genetic architecture of 179 host proteins reported to interact with SARS-CoV-2 proteins or to participate in the host response to COVID-19. We identified 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links, evidence that putative viral interaction partners such as MARK3 affect immune response, and establish the first link between a recently reported variant for respiratory failure of COVID-19 patients at the ABO locus and hypercoagulation, i.e. maladaptive host response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and dynamic and detailed interrogation of results is facilitated through an interactive webserver ( https://omicscience.org/apps/covidpgwas/ ).

15.
Cell Syst ; 11(1): 11-24.e4, 2020 07 22.
Article in English | MEDLINE | ID: covidwho-459007

ABSTRACT

The COVID-19 pandemic is an unprecedented global challenge, and point-of-care diagnostic classifiers are urgently required. Here, we present a platform for ultra-high-throughput serum and plasma proteomics that builds on ISO13485 standardization to facilitate simple implementation in regulated clinical laboratories. Our low-cost workflow handles up to 180 samples per day, enables high precision quantification, and reduces batch effects for large-scale and longitudinal studies. We use our platform on samples collected from a cohort of early hospitalized cases of the SARS-CoV-2 pandemic and identify 27 potential biomarkers that are differentially expressed depending on the WHO severity grade of COVID-19. They include complement factors, the coagulation system, inflammation modulators, and pro-inflammatory factors upstream and downstream of interleukin 6. All protocols and software for implementing our approach are freely available. In total, this work supports the development of routine proteomic assays to aid clinical decision making and generate hypotheses about potential COVID-19 therapeutic targets.


Subject(s)
Blood Proteins/metabolism , Coronavirus Infections/blood , Pneumonia, Viral/blood , Proteomics/methods , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , Biomarkers/blood , Blood Proteins/analysis , COVID-19 , Coronavirus Infections/classification , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Humans , Male , Middle Aged , Pandemics/classification , Pneumonia, Viral/classification , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL