Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Lancet Microbe ; 1(7): e300-e307, 2020 11.
Article in English | MEDLINE | ID: covidwho-1795951

ABSTRACT

BACKGROUND: Access to rapid diagnosis is key to the control and management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Laboratory RT-PCR testing is the current standard of care but usually requires a centralised laboratory and significant infrastructure. We describe our diagnostic accuracy assessment of a novel, rapid point-of-care real time RT-PCR CovidNudge test, which requires no laboratory handling or sample pre-processing. METHODS: Between April and May, 2020, we obtained two nasopharyngeal swab samples from individuals in three hospitals in London and Oxford (UK). Samples were collected from three groups: self-referred health-care workers with suspected COVID-19; patients attending emergency departments with suspected COVID-19; and hospital inpatient admissions with or without suspected COVID-19. For the CovidNudge test, nasopharyngeal swabs were inserted directly into a cartridge which contains all reagents and components required for RT-PCR reactions, including multiple technical replicates of seven SARS-CoV-2 gene targets (rdrp1, rdrp2, e-gene, n-gene, n1, n2 and n3) and human ribonuclease P (RNaseP) as sample adequacy control. Swab samples were tested in parallel using the CovidNudge platform, and with standard laboratory RT-PCR using swabs in viral transport medium for processing in a central laboratory. The primary analysis was to compare the sensitivity and specificity of the point-of-care CovidNudge test with laboratory-based testing. FINDINGS: We obtained 386 paired samples: 280 (73%) from self-referred health-care workers, 15 (4%) from patients in the emergency department, and 91 (23%) hospital inpatient admissions. Of the 386 paired samples, 67 tested positive on the CovidNudge point-of-care platform and 71 with standard laboratory RT-PCR. The overall sensitivity of the point-of-care test compared with laboratory-based testing was 94% (95% CI 86-98) with an overall specificity of 100% (99-100). The sensitivity of the test varied by group (self-referred healthcare workers 94% [95% CI 85-98]; patients in the emergency department 100% [48-100]; and hospital inpatient admissions 100% [29-100]). Specificity was consistent between groups (self-referred health-care workers 100% [95% CI 98-100]; patients in the emergency department 100% [69-100]; and hospital inpatient admissions 100% [96-100]). Point of care testing performance was similar during a period of high background prevalence of laboratory positive tests (25% [95% 20-31] in April, 2020) and low prevalence (3% [95% 1-9] in inpatient screening). Amplification of viral nucleocapsid (n1, n2, and n3) and envelope protein gene (e-gene) were most sensitive for detection of spiked SARS-CoV-2 RNA. INTERPRETATION: The CovidNudge platform was a sensitive, specific, and rapid point of care test for the presence of SARS-CoV-2 without laboratory handling or sample pre-processing. The device, which has been implemented in UK hospitals since May, 2020, could enable rapid decisions for clinical care and testing programmes. FUNDING: National Institute of Health Research (NIHR) Imperial Biomedical Research Centre, NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at Oxford University in partnership with Public Health England, NIHR Biomedical Research Centre Oxford, and DnaNudge.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Point-of-Care Testing , RNA, Viral/genetics , Sensitivity and Specificity
3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-332827

ABSTRACT

SARS-CoV-2 infection, and resulting disease, COVID-19, has a high mortality amongst patients with haematological malignancies. Global vaccine rollouts have successfully reduced hospitalisations and deaths, but the efficacy of vaccination in patients with haematological malignancies is known to be reduced. The UK-strategy offered a third, mRNA-based, vaccine as an extension to the primary course in these patients. Here we quantify serological responses following these vaccines in a cohort of 381 patients with haematological malignancies attending routine haematology outpatient clinics. By comparison with healthy controls, we report suboptimal responses following two primary vaccines, with significantly enhanced responses following the third primary dose. These responses however are heterogeneous and determined by haematological malignancy sub-type and therapy. We identify a group of patients with continued sub-optimal vaccine responses who may benefit from additional doses, as well as early intervention with monoclonal therapies in the event of developing SARS-CoV-2 infection.

4.
Research Square ; 2022.
Article in English | EuropePMC | ID: covidwho-1786488

ABSTRACT

SARS-CoV-2 infection, and resulting disease, COVID-19, has a high mortality amongst patients with haematological malignancies. Global vaccine rollouts have successfully reduced hospitalisations and deaths, but the efficacy of vaccination in patients with haematological malignancies is known to be reduced. The UK-strategy offered a third, mRNA-based, vaccine as an extension to the primary course in these patients. Here we quantify serological responses following these vaccines in a cohort of 381 patients with haematological malignancies attending routine haematology outpatient clinics. By comparison with healthy controls, we report suboptimal responses following two primary vaccines, with significantly enhanced responses following the third primary dose. These responses however are heterogeneous and determined by haematological malignancy sub-type and therapy. We identify a group of patients with continued sub-optimal vaccine responses who may benefit from additional doses, as well as early intervention with monoclonal therapies in the event of developing SARS-CoV-2 infection.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-322658

ABSTRACT

Background: Recently emerging SARS-CoV-2 variants have been associated with an increased rate of transmission within the community. Little is known about the impact their increased infectivity has on transmission within hospitals.Methods: We collected viral sequences and epidemiological data of patients with community and healthcare associated SARS-CoV-2 infections, sampled from 16th November 2020 to 10th January 2021, from nine hospitals participating in the COG-UK HOCI study. Outbreaks were identified using ward information, lineage and pairwise genetic differences between viral sequences.Findings: Mixed effects logistic regression analysis of 4184 sequences showed healthcare-acquired infections were no more likely to be identified as the Alpha variant than community acquired infections. Nosocomial outbreaks were investigated based on overlapping ward stay and SARS-CoV-2 genome sequence similarity. There was no significant difference in the number of patients involved in outbreaks caused by the Alpha variant compared to outbreaks caused by other lineages.Interpretation: Notwithstanding evidence from community studies that the Alpha variant is more transmissible, we find no evidence to support it causing more nosocomial transmission than previous lineages. This suggests that the stringent infection prevention measures already in place in UK hospitals contained the spread of the Alpha variant as effectively as other less transmissible lineages, providing reassurance of their efficacy against emerging variants of concern.Funding Information: COG-UK HOCI funded by COG-UK consortium. The COG-UK consortium is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) and Genome Research Limited, operating as the Wellcome Sanger Institute.Declaration of Interests: None to declare. Ethics Approval Statement: Ethical approval for the HOCI study was provided by REC 20/EE/0118.

6.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-322593

ABSTRACT

Background: Accurate and sensitive detection of antibody to SARS-CoV-2 remains an essential component of the pandemic response. Measuring antibody that predicts neutralising activity and the vaccine response is an absolute requirement for laboratory-based confirmatory and reference activity.Methods: The viral receptor binding domain (RBD) constitutes the prime target antigen for neutralising antibody. A double antigen binding assay (DABA) provides the most sensitive format. It has been exploited in a novel hybrid manner employing an S1 solid-phase preferentially presenting RBD once solid-phase bound, coupled with a labelled RBD conjugate, used in a two-step sequential assay.Findings: This assay showed a specificity of 100% on 825 pre COVID-19 samples and a potential sensitivity of 99.6% on 276 recovery samples, predicting quantitatively the presence of neutralising antibody determined by pseudo-type neutralisation and by plaque reduction. Anti-RBD is also measurable in ferrets immunised with ChadOx1 nCoV-19 vaccine. The early response at presentation with illness, elevated responsiveness with disease severity, detection of asymptomatic seroconversion and persistence after the loss of antibody to the nucleoprotein (anti-NP) are all documented.Trial Registration: The ISARIC WHO CCP-UK study was registered at https://www.isrctn.com/ISRCTN66726260 and designated an Urgent Public Health Research Study by NIHR.Interpretation: The hybrid DABA displays the attributes necessary for an antibody test to be used in both clinical and reference serology. It allows the neutralising antibody response to be inferred early in infection and potentially in vaccine recipients. It is also of sufficient sensitivity to be used to provide serological confirmation of prior infection and provides a more secure measure for seroprevalence studies in the population generally than does anti-NP based on the Architect platform.Funding: This work is variously supported by grants from: the National Institute for Health Research (NIHR;award CO-CIN-01), the Medical Research Council (MRC;grant MC_PC_19059 and MC_PC_19078), MRC NIHR (grant CV220-111) and by the NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford (award 200907), NIHR HPRU in Respiratory Infections at Imperial College London with PHE (award 200927), Wellcome Trust and Department for International Development (DID;215091/Z/18/Z), the Bill and Melinda Gates Foundation (OPP1209135), Liverpool Experimental Cancer Medicine Centre (grant reference C18616/A25153), NIHR Biomedical Research Centre at Imperial College London (IS-BRC-1215-20013), EU Platform for European Preparedness Against (Re-)emerging Epidemics (PREPARE;FP7 project 602525), and NIHR Clinical Research Network for providing infrastructure support for this research.Declaration of Interests: RST, MOM and PC report patent pending (Patent Application No. 2011047.4 for “SARS-CoV-2 antibody detection assay). All other authors declare no competing interests.Ethics Approval Statement: The use of tissues was approved by the CDRTB Steering Committee in accordance with the responsibility delegated by the National Research Ethics Service (South Central Ethics Committee – C, NRES reference 15/SC/0089).Written informed consent was obtained from all patients. Ethical approval was given by the South Central–Oxford C Research Ethics Committee in England (reference: 13/SC/0149), Scotland A Research Ethics Committee (reference: 20/SS/0028) and World Health Organization Ethics Review Committee (RPC571 and RPC572l;25 April 2013)

7.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327145

ABSTRACT

Background: Emerging data suggest a reduction in SARS-CoV-2 vaccine effectiveness against Omicron SARS-CoV-2 infection. There is also evidence to show that Omicron is less pathogenic than previous variants. For clinically vulnerable populations, a less pathogenic variant may still have significant impact on morbidity and mortality. Herein we assess the clinical impact of Omicron infection, and vaccine effectiveness, in an in-centre haemodialysis (IC-HD) population. Methods One thousand, one hundred and twenty-one IC-HD patients were included in the analysis, all patients underwent weekly screening for SARS-CoV-2 infection via RT-PCR testing between 1st December 2021 and 16th January 2022. Screening for infection via weekly RT-PCR testing and 3-monthly serological assessment started prior to the vaccine roll out in 2020. Results Omicron infection was diagnosed in 145/1121 (12.9%) patients over the study period, equating to an infection rate of 3.1 per 1000 patient days. Vaccine effectiveness (VE) against Omicron infection in patients who had received a booster vaccine was 58 (23-75)%, p=0.002;VE was seen in patients who received either ChAdOx1, VE of 47(2-70)%, p=0.034, or BNT162b2, VE of 66 (36-81)%, p=0.0005, as their first two doses. No protection against infection was seen in patients who were partially vaccinated (2-doses), p=0.83. Prior infection was associated with reduced likelihood of Omicron infection, HR 0.69 (0.50-0.96), p=0.0289. Four (2.8%) patients died within 28 days of infection diagnosis, with no excess mortality was seen in patients with infection. Conclusion 3-doses of SARS-CoV-2 vaccines are required in ICHD to provide protection against Omicron infection.

8.
J Virol Methods ; 302: 114475, 2022 04.
Article in English | MEDLINE | ID: covidwho-1652648

ABSTRACT

Accurate and sensitive detection of antibody to SARS-CoV-2 remains an essential component of the pandemic response. Measuring antibody that predicts neutralising activity and the vaccine response is an absolute requirement for laboratory-based confirmatory and reference activity. The viral receptor binding domain (RBD) constitutes the prime target antigen for neutralising antibody. A double antigen binding assay (DABA), providing the most sensitive format has been exploited in a novel hybrid manner employing a solid-phase S1 preferentially presenting RBD, coupled with a labelled RBD conjugate, used in a two-step sequential assay for detection and measurement of antibody to RBD (anti-RBD). This class and species neutral assay showed a specificity of 100 % on 825 pre COVID-19 samples and a potential sensitivity of 99.6 % on 276 recovery samples, predicting quantitatively the presence of neutralising antibody determined by pseudo-type neutralization and by plaque reduction. Anti-RBD is also measurable in ferrets immunised with ChadOx1 nCoV-19 vaccine and in humans immunised with both AstraZeneca and Pfizer vaccines. This assay detects anti-RBD at presentation with illness, demonstrates its elevation with disease severity, its sequel to asymptomatic infection and its persistence after the loss of antibody to the nucleoprotein (anti-NP). It also provides serological confirmation of prior infection and offers a secure measure for seroprevalence and studies of vaccine immunisation in human and animal populations. The hybrid DABA also displays the attributes necessary for the detection and quantification of anti-RBD to be used in clinical practice. An absence of detectable anti-RBD by this assay predicates the need for passive immune prophylaxis in at-risk patients.


Subject(s)
Antibodies, Viral/isolation & purification , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/isolation & purification , COVID-19/diagnosis , Ferrets , Humans , RNA, Viral , Seroepidemiologic Studies
9.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-295551

ABSTRACT

Background: The early transmission dynamics of SARS-CoV-2 in the UK are unknown but their investigation is critical to aid future pandemic planning. <br><br>Methods: Cross-classified by age-group, ethnicity and deprivation, we tested anonymised stored historic antenatal serum samples, from two north-west London NHS trusts, for total antibody to SARS-CoV-2 receptor binding domain (anti-RBD) using an in-house hybrid double antigen binding, two-step sequential enzyme-linked immunosorbent assay (ELISA). We estimated prevalence of seroreactivity across fortnightly intervals from October 2019 – September 2020 and used logistic regression to quantify the relationships between seroreactivity, time, age, ethnicity, and deprivation. We also inferred the incidence from our antibody prevalence over time. <br><br>Findings: We analysed over 11,000 samples. Estimated prevalence of seroreactivity increased from 1% prior to mid-February 2020 (as early as 2019) to 17% in September 2020.Our results show higher prevalence of seroreactivity to SARS-CoV-2 in younger, non-white ethnicity, and more deprived groups. We found no significant interaction between the effects of ethnicity and deprivation. Derived from prevalence, the estimated incidence of seroreactivity reflects the trends observed in daily hospitalisations and deaths in London that followed 10 and 13 days later, respectively. Peak incidence occurred in early April 2020 and estimates suggested resurgence in late summer 2020 but with a wide confidence interval. <br><br>Interpretation: We found no evidence of community transmission of SARS-CoV-2 in London until after January 2020. Our study was not able to determine the date of introduction of the SARS-CoV-2 virus. Stored antenatal serum samples are a potentially valuable resource for serosurveillance during future outbreaks. <br><br>Funding Information: Community Jameel, National Institute for Health Research, Medical Research Council, Imperial College London Department of Infectious Disease departmental funds.<br><br>Declaration of Interests: MM and RST are listed as inventors in IPR filings for the Imperial Hybrid DABA used in this analysis. Please see United Kingdom Patent Application No. 2011047.4 for “SARS-CoV-2 antibody detection assay”. SMB is member of both Royal Statistical Society’s COVID-19 Taskforce and Working Group on Diagnostic Tests. SMB serves on UKHSA/DHSC’s Testing Initiatives Evaluation Board (January 2021 to present). All other have nothing to declare. <br><br>Ethics Approval Statement: Ethical approval for a non-consent, anonymised study was gained, REC reference 20/NI/0107, because strong safeguards against deductive disclosure of the identities of individuals with SARS-CoV-2 antibodies were inbuilt. <br>

10.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-294534

ABSTRACT

Background: Diagnostic laboratories are currently required to provide routine testing of asymptomatic staff and patients as a part of their clinical screening for SARS-CoV-2 infection. However, these cohorts display very different disease prevalence from symptomatic individuals and testing capacity for asymptomatic screening is often limited. Group testing is frequently proposed as a possible solution to address this;however, proposals neglect the technical and operational feasibility of implementation in a front-line diagnostic laboratory. Methods: Between October and December 2020, as a seven-week proof of concept, we took into account scientific, technical and operational feasibility to design and implement an adaptive pooling strategy in an NHS diagnostic laboratory in London (UK). We assessed the impact of pooling on analytical sensitivity and modelled the impact of prevalence on pooling strategy. We then considered the operational constraints to model the potential gains in capacity and the requirements for additional staff and infrastructure. Finally, we developed a LIMS-agnostic laboratory automation workflow and software solution and tested the technical feasibility of our adaptive pooling workflow. Results: First, we determined the analytical sensitivity of the implemented SARS-CoV-2 assay to be 250 copies/mL. We then determined that, in a setting with limited analyser capacity, the testing capacity could be increased by two-fold with pooling, however, in a setting with limited reagents, this could rise to a five-fold increase. These capacity increases could be realized with modest additional resource and staffing requirements whilst utilizing up to 76% fewer plastic consumables and 90% fewer reagents. Finally, we successfully implemented a plate-based pooling workflow and tested 920 patient samples using the reagents that would usually be required to process just 222 samples. Conclusions: Adaptive pooled testing is a scientifically, technically and operationally feasible solution to increase testing capacity in frontline NHS diagnostic laboratories.

11.
Wellcome Open Res ; 6: 268, 2021.
Article in English | MEDLINE | ID: covidwho-1527019

ABSTRACT

Background: Diagnostic laboratories are currently required to provide routine testing of asymptomatic staff and patients as a part of their clinical screening for SARS-CoV-2 infection. However, these cohorts display very different disease prevalence from symptomatic individuals and testing capacity for asymptomatic screening is often limited. Group testing is frequently proposed as a possible solution to address this; however, proposals neglect the technical and operational feasibility of implementation in a front-line diagnostic laboratory. Methods: Between October and December 2020, as a seven-week proof of concept, we took into account scientific, technical and operational feasibility to design and implement an adaptive pooling strategy in an NHS diagnostic laboratory in London (UK). We assessed the impact of pooling on analytical sensitivity and modelled the impact of prevalence on pooling strategy. We then considered the operational constraints to model the potential gains in capacity and the requirements for additional staff and infrastructure. Finally, we developed a LIMS-agnostic laboratory automation workflow and software solution and tested the technical feasibility of our adaptive pooling workflow. Results: First, we determined the analytical sensitivity of the implemented SARS-CoV-2 assay to be 250 copies/mL. We then determined that, in a setting with limited analyser capacity, the testing capacity could be increased by two-fold with pooling, however, in a setting with limited reagents, this could rise to a five-fold increase. These capacity increases could be realized with modest additional resource and staffing requirements whilst utilizing up to 76% fewer plastic consumables and 90% fewer reagents. Finally, we successfully implemented a plate-based pooling workflow and tested 920 patient samples using the reagents that would usually be required to process just 222 samples. Conclusions: Adaptive pooled testing is a scientifically, technically and operationally feasible solution to increase testing capacity in frontline NHS diagnostic laboratories.

12.
Viruses ; 13(10)2021 10 08.
Article in English | MEDLINE | ID: covidwho-1463840

ABSTRACT

The emergence of variants of SARS-CoV-2 has created challenges for the testing infrastructure. Although large-scale genome sequencing of SARS-CoV-2 has facilitated hospital and public health responses, access to sequencing facilities globally is variable and turnaround times can be significant, so there is a requirement for rapid and cost-effective alternatives. Applying a polymerase chain reaction (PCR)-based single nucleotide polymorphism (SNP) approach enables rapid (<4 h) identification of SARS-CoV-2 lineages from nucleic acid extracts, through the presence or absence of a panel of defined of genomic polymorphisms. For example, the B.1.1.7 lineage ("UK", "Alpha", or "Kent" variant) is characterised by 23 mutations compared to the reference strain, and the most biologically significant of these are found in the S gene. We have developed a SARS-CoV-2 typing assay focused on five positions in the S gene (HV69/70, N501, K417, E484 and P681). This configuration can identify a range of variants, including all the "Variants of Concern" currently designated by national and international public health bodies. The panel has been evaluated using a range of clinical isolates and standardised control materials at four UK hospitals and shows excellent concordance with the known lineage information derived from full sequence analysis. The assay has a turnaround time of about three hours for a set of up to 24 samples and has been utilised to identify emerging variants in a clinical setting.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Multiplex Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Genome, Viral/genetics , Humans , Nucleic Acid Amplification Techniques/methods , Polymorphism, Single Nucleotide/genetics , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Whole Genome Sequencing/methods
13.
J Infect ; 83(6): 693-700, 2021 12.
Article in English | MEDLINE | ID: covidwho-1446866

ABSTRACT

OBJECTIVES: Recently emerging SARS-CoV-2 variants have been associated with an increased rate of transmission within the community. We sought to determine whether this also resulted in increased transmission within hospitals. METHODS: We collected viral sequences and epidemiological data of patients with community and healthcare associated SARS-CoV-2 infections, sampled from 16th November 2020 to 10th January 2021, from nine hospitals participating in the COG-UK HOCI study. Outbreaks were identified using ward information, lineage and pairwise genetic differences between viral sequences. RESULTS: Mixed effects logistic regression analysis of 4184 sequences showed healthcare-acquired infections were no more likely to be identified as the Alpha variant than community acquired infections. Nosocomial outbreaks were investigated based on overlapping ward stay and SARS-CoV-2 genome sequence similarity. There was no significant difference in the number of patients involved in outbreaks caused by the Alpha variant compared to outbreaks caused by other lineages. CONCLUSIONS: We find no evidence to support it causing more nosocomial transmission than previous lineages. This suggests that the stringent infection prevention measures already in place in UK hospitals contained the spread of the Alpha variant as effectively as other less transmissible lineages, providing reassurance of their efficacy against emerging variants of concern.


Subject(s)
COVID-19 , Cross Infection , Cross Infection/epidemiology , Hospitals , Humans , SARS-CoV-2 , United Kingdom/epidemiology
14.
BMJ Open Respir Res ; 8(1)2021 09.
Article in English | MEDLINE | ID: covidwho-1430193

ABSTRACT

BACKGROUND: SARS-CoV-2 lineage B.1.1.7 has been associated with an increased rate of transmission and disease severity among subjects testing positive in the community. Its impact on hospitalised patients is less well documented. METHODS: We collected viral sequences and clinical data of patients admitted with SARS-CoV-2 and hospital-onset COVID-19 infections (HOCIs), sampled 16 November 2020 to 10 January 2021, from eight hospitals participating in the COG-UK-HOCI study. Associations between the variant and the outcomes of all-cause mortality and intensive therapy unit (ITU) admission were evaluated using mixed effects Cox models adjusted by age, sex, comorbidities, care home residence, pregnancy and ethnicity. FINDINGS: Sequences were obtained from 2341 inpatients (HOCI cases=786) and analysis of clinical outcomes was carried out in 2147 inpatients with all data available. The HR for mortality of B.1.1.7 compared with other lineages was 1.01 (95% CI 0.79 to 1.28, p=0.94) and for ITU admission was 1.01 (95% CI 0.75 to 1.37, p=0.96). Analysis of sex-specific effects of B.1.1.7 identified increased risk of mortality (HR 1.30, 95% CI 0.95 to 1.78, p=0.096) and ITU admission (HR 1.82, 95% CI 1.15 to 2.90, p=0.011) in females infected with the variant but not males (mortality HR 0.82, 95% CI 0.61 to 1.10, p=0.177; ITU HR 0.74, 95% CI 0.52 to 1.04, p=0.086). INTERPRETATION: In common with smaller studies of patients hospitalised with SARS-CoV-2, we did not find an overall increase in mortality or ITU admission associated with B.1.1.7 compared with other lineages. However, women with B.1.1.7 may be at an increased risk of admission to intensive care and at modestly increased risk of mortality.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/virology , COVID-19 Testing , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Severity of Illness Index , United Kingdom , Young Adult
15.
Nat Commun ; 11(1): 4793, 2020 09 17.
Article in English | MEDLINE | ID: covidwho-1387318

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Kidney Int ; 99(6): 1470-1477, 2021 06.
Article in English | MEDLINE | ID: covidwho-1386157

ABSTRACT

Patients with end stage kidney disease receiving in-center hemodialysis (ICHD) have had high rates of SARS-CoV-2 infection. Following infection, patients receiving ICHD frequently develop circulating antibodies to SARS-CoV-2, even with asymptomatic infection. Here, we investigated the durability and functionality of the immune responses to SARS-CoV-2 infection in patients receiving ICHD. Three hundred and fifty-six such patients were longitudinally screened for SARS-CoV-2 antibodies and underwent routine PCR-testing for symptomatic and asymptomatic infection. Patients were regularly screened for nucleocapsid protein (anti-NP) and receptor binding domain (anti-RBD) antibodies, and those who became seronegative at six months were screened for SARS-CoV-2 specific T-cell responses. One hundred and twenty-nine (36.2%) patients had detectable antibody to anti-NP at time zero, of whom 127 also had detectable anti-RBD. Significantly, at six months, 71/111 (64.0%) and 99/116 (85.3%) remained anti-NP and anti-RBD seropositive, respectively. For patients who retained antibody, both anti-NP and anti-RBD levels were reduced significantly after six months. Eleven patients who were anti-NP seropositive at time zero, had no detectable antibody at six months; of whom eight were found to have SARS-CoV-2 antigen specific T cell responses. Independent of antibody status at six months, patients with baseline positive SARS-CoV-2 serology were significantly less likely to have PCR confirmed infection over the following six months. Thus, patients receiving ICHD mount durable immune responses six months post SARS-CoV-2 infection, with fewer than 3% of patients showing no evidence of humoral or cellular immunity.


Subject(s)
Antibodies, Viral/analysis , COVID-19/immunology , Kidney Failure, Chronic/therapy , Renal Dialysis/adverse effects , SARS-CoV-2/immunology , COVID-19 Testing , Female , Humans , Immunity , Male , Pandemics , Polymerase Chain Reaction , Reinfection , SARS-CoV-2/isolation & purification , Serologic Tests/methods
18.
Ann Rheum Dis ; 80(10): 1322-1329, 2021 10.
Article in English | MEDLINE | ID: covidwho-1346035

ABSTRACT

OBJECTIVE: There is an urgent need to assess the impact of immunosuppressive therapies on the immunogenicity and efficacy of SARS-CoV-2 vaccination. METHODS: Serological and T-cell ELISpot assays were used to assess the response to first-dose and second-dose SARS-CoV-2 vaccine (with either BNT162b2 mRNA or ChAdOx1 nCoV-19 vaccines) in 140 participants receiving immunosuppression for autoimmune rheumatic and glomerular diseases. RESULTS: Following first-dose vaccine, 28.6% (34/119) of infection-naïve participants seroconverted and 26.0% (13/50) had detectable T-cell responses to SARS-CoV-2. Immune responses were augmented by second-dose vaccine, increasing seroconversion and T-cell response rates to 59.3% (54/91) and 82.6% (38/46), respectively. B-cell depletion at the time of vaccination was associated with failure to seroconvert, and tacrolimus therapy was associated with diminished T-cell responses. Reassuringly, only 8.7% of infection-naïve patients had neither antibody nor T-cell responses detected following second-dose vaccine. In patients with evidence of prior SARS-CoV-2 infection (19/140), all mounted high-titre antibody responses after first-dose vaccine, regardless of immunosuppressive therapy. CONCLUSION: SARS-CoV-2 vaccines are immunogenic in patients receiving immunosuppression, when assessed by a combination of serology and cell-based assays, although the response is impaired compared with healthy individuals. B-cell depletion following rituximab impairs serological responses, but T-cell responses are preserved in this group. We suggest that repeat vaccine doses for serological non-responders should be investigated as means to induce more robust immunological response.


Subject(s)
Autoimmune Diseases/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunocompromised Host/immunology , Immunogenicity, Vaccine/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoimmune Diseases/drug therapy , Female , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunosuppressive Agents/immunology , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , SARS-CoV-2 , T-Lymphocytes/immunology
19.
J Infect ; 83(4): 452-457, 2021 10.
Article in English | MEDLINE | ID: covidwho-1340722

ABSTRACT

OBJECTIVES: Real-world evaluation of the performance of the Innova lateral flow immunoassay antigen device (LFD) for regular COVID-19 testing of hospital workers. METHODS: This prospective cohort analysis took place at a London NHS Trust. 5076 secondary care healthcare staff participated in LFD testing from 18 November 2020 to21 January 2021. Staff members submitted results and symptoms via an online portal twice weekly. Individuals with positive LFD results were invited for confirmatory SARS CoV-2 PCR testing. The positive predictive value (PPV) of the LFD was measured. Secondary outcome measures included time from LFD result to PCR test and staff symptom profiles. RESULTS: 284/5076 individuals reported a valid positive LFD result, and a paired PCR result was obtained in 259/284 (91.2%). 244 were PCR positive yielding a PPV of 94.21% (244/259, 95% CI 90.73% to 96.43%). 204/259 (78.8%) staff members had the PCR within 36 hours of the LFD test. Symptom profiles were confirmed for 132/244 staff members (54.1%) with positive PCR results (true positives) and 13/15 (86.6%) with negative PCR results (false positives). 91/132 true positives (68.9%) were symptomatic at the time of LFD testing: 65/91 (71.4%) had symptoms meeting the PHE case definition of COVID-19, whilst 26/91 (28.6%) had atypical symptoms. 18/41 (43.9%) staff members who were asymptomatic at the time of positive LFD developed symptoms in the subsequent four days. 9/13 (76.9%) false positives were asymptomatic, 1/13 (7.7%) had atypical symptoms and 3/13 (23.1%) had symptoms matching the PHE case definition. CONCLUSIONS: The PPV of the Innova LFD is high when used amongst hospital staff during periods of high prevalence of COVID-19, yet we find frequent use by symptomatic staff rather than as a purely asymptomatic screening tool. LFD testing does allow earlier isolation of infected workers and facilitates detection of individuals whose symptoms do not qualify for PCR testing.


Subject(s)
COVID-19 , COVID-19 Testing , Cohort Studies , Health Personnel , Hospitals , Humans , London/epidemiology , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL