Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nat Commun ; 13(1): 2979, 2022 May 27.
Article in English | MEDLINE | ID: covidwho-1868004

ABSTRACT

Neutralization capacity of antibodies against Omicron after a prior SARS-CoV-2 infection in children and adolescents is not well studied. Therefore, we evaluated virus-neutralizing capacity against SARS-CoV-2 Alpha, Beta, Gamma, Delta and Omicron variants by age-stratified analyses (<5, 5-11, 12-21 years) in 177 pediatric patients hospitalized with severe acute COVID-19, acute MIS-C, and in convalescent samples of outpatients with mild COVID-19 during 2020 and early 2021. Across all patients, less than 10% show neutralizing antibody titers against Omicron. Children <5 years of age hospitalized with severe acute COVID-19 have lower neutralizing antibodies to SARS-CoV-2 variants compared with patients >5 years of age. As expected, convalescent pediatric COVID-19 and MIS-C cohorts demonstrate higher neutralization titers than hospitalized acute COVID-19 patients. Overall, children and adolescents show some loss of cross-neutralization against all variants, with the most pronounced loss against Omicron. In contrast to SARS-CoV-2 infection, children vaccinated twice demonstrated higher titers against Alpha, Beta, Gamma, Delta and Omicron. These findings can influence transmission, re-infection and the clinical disease outcome from emerging SARS-CoV-2 variants and supports the need for vaccination in children.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Antibodies, Viral , COVID-19/complications , Child , Child, Preschool , Humans , Membrane Glycoproteins , Neutralization Tests , Spike Glycoprotein, Coronavirus , Systemic Inflammatory Response Syndrome , Viral Envelope Proteins
2.
Clin Infect Dis ; 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1852992

ABSTRACT

BACKGROUND: Detection of SARS-CoV-2 antigens in blood has high sensitivity in adults with acute COVID-19, but sensitivity in pediatric patients is unclear. Recent data suggest that persistent SARS-CoV-2 spike antigenemia may contribute to multisystem inflammatory syndrome in children (MIS-C). We quantified SARS-CoV-2 nucleocapsid (N) and spike (S) antigens in blood of pediatric patients with either acute COVID-19 or MIS-C using ultrasensitive immunoassays (Meso Scale Discovery). METHODS: Plasma was collected from inpatients (<21 years) enrolled across 15 hospitals in 15 US states. Acute COVID-19 patients (n=36) had a range of disease severity and positive nasopharyngeal SARS-CoV-2 RT-PCR within 24 hours of blood collection. Patients with MIS-C (n=53) met CDC criteria and tested positive for SARS-CoV-2 (RT-PCR or serology). Controls were patients pre-COVID-19 (n=67) or within 24h of negative RT-PCR (n=43). RESULTS: Specificities of N and S assays were 95-97% and 100%, respectively. In acute COVID-19 patients, N/S plasma assays had 89%/64% sensitivity, respectively; sensitivity in patients with concurrent nasopharyngeal swab cycle threshold (Ct) < 35 were 93%/63%. Antigen concentrations ranged from 1.28-3,844 pg/mL (N) and 1.65-1,071 pg/mL (S) and correlated with disease severity. In MIS-C, antigens were detected in 3/53 (5.7%) samples (3 N-positive: 1.7, 1.9, 121.1 pg/mL; 1 S-positive: 2.3 pg/mL); the patient with highest N had positive nasopharyngeal RT-PCR (Ct 22.3) concurrent with blood draw. CONCLUSIONS: Ultrasensitive blood SARS-CoV-2 antigen measurement has high diagnostic yield in children with acute COVID-19. Antigens were undetectable in most MIS-C patients, suggesting that persistent antigenemia is not a common contributor to MIS-C pathogenesis.

3.
N Engl J Med ; 386(20): 1899-1909, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-1768968

ABSTRACT

BACKGROUND: Spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (omicron) variant, which led to increased U.S. hospitalizations for coronavirus disease 2019 (Covid-19), generated concern about immune evasion and the duration of protection from vaccines in children and adolescents. METHODS: Using a case-control, test-negative design, we assessed vaccine effectiveness against laboratory-confirmed Covid-19 leading to hospitalization and against critical Covid-19 (i.e., leading to receipt of life support or to death). From July 1, 2021, to February 17, 2022, we enrolled case patients with Covid-19 and controls without Covid-19 at 31 hospitals in 23 states. We estimated vaccine effectiveness by comparing the odds of antecedent full vaccination (two doses of BNT162b2 messenger RNA vaccine) at least 14 days before illness among case patients and controls, according to time since vaccination for patients 12 to 18 years of age and in periods coinciding with circulation of B.1.617.2 (delta) (July 1, 2021, to December 18, 2021) and omicron (December 19, 2021, to February 17, 2022) among patients 5 to 11 and 12 to 18 years of age. RESULTS: We enrolled 1185 case patients (1043 [88%] of whom were unvaccinated, 291 [25%] of whom received life support, and 14 of whom died) and 1627 controls. During the delta-predominant period, vaccine effectiveness against hospitalization for Covid-19 among adolescents 12 to 18 years of age was 93% (95% confidence interval [CI], 89 to 95) 2 to 22 weeks after vaccination and was 92% (95% CI, 80 to 97) at 23 to 44 weeks. Among adolescents 12 to 18 years of age (median interval since vaccination, 162 days) during the omicron-predominant period, vaccine effectiveness was 40% (95% CI, 9 to 60) against hospitalization for Covid-19, 79% (95% CI, 51 to 91) against critical Covid-19, and 20% (95% CI, -25 to 49) against noncritical Covid-19. During the omicron period, vaccine effectiveness against hospitalization among children 5 to 11 years of age was 68% (95% CI, 42 to 82; median interval since vaccination, 34 days). CONCLUSIONS: BNT162b2 vaccination reduced the risk of omicron-associated hospitalization by two thirds among children 5 to 11 years of age. Although two doses provided lower protection against omicron-associated hospitalization than against delta-associated hospitalization among adolescents 12 to 18 years of age, vaccination prevented critical illness caused by either variant. (Funded by the Centers for Disease Control and Prevention.).


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Case-Control Studies , Child , Child, Preschool , Critical Illness/therapy , Hospitalization , Humans , Vaccines, Synthetic/therapeutic use , /therapeutic use
4.
MMWR Morb Mortal Wkly Rep ; 70(42): 1483-1488, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1727005

ABSTRACT

Pfizer-BioNTech COVID-19 vaccine is authorized for use in children and adolescents aged 12-15 years and is licensed by the Food and Drug Administration (FDA) for persons aged ≥16 (1). A randomized placebo-controlled trial demonstrated an efficacy of 100% (95% confidence interval [CI] = 75.3%-100%) in preventing outpatient COVID-19 in persons aged 12-15 years (2); however, data among adolescents on vaccine effectiveness (VE) against COVID-19 in real-world settings are limited, especially among hospitalized patients. In early September 2021, U.S. pediatric COVID-19 hospitalizations reached the highest level during the pandemic (3,4). In a test-negative, case-control study at 19 pediatric hospitals in 16 states during June 1-September 30, 2021, the effectiveness of 2 doses of Pfizer-BioNTech vaccine against COVID-19 hospitalization was assessed among children and adolescents aged 12-18 years. Among 464 hospitalized persons aged 12-18 years (179 case-patients and 285 controls), the median age was 15 years, 72% had at least one underlying condition, including obesity, and 68% attended in-person school. Effectiveness of 2 doses of Pfizer-BioNTech vaccine against COVID-19 hospitalization was 93% (95% CI = 83%-97%), during the period when B.1.617.2 (Delta) was the predominant variant. This evaluation demonstrated that 2 doses of Pfizer-BioNTech vaccine are highly effective at preventing COVID-19 hospitalization among persons aged 12-18 years and reinforces the importance of vaccination to protect U.S. youths against severe COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Adolescent , COVID-19/epidemiology , Child , Female , Humans , Male , United States/epidemiology , Vaccines, Synthetic
6.
Vaccines (Basel) ; 10(2)2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1700517

ABSTRACT

Mucosal immunity plays an important role in the control of viral respiratory infections like SARS-CoV-2. While systemic immune responses against the SARS-2-CoV-2 have been studied in children, there is no information on mucosal antibody response, especially in the lower respiratory tract of children coronavirus disease 2019 (COVID-19) and post-infectious multisystem inflammatory syndrome in children (MIS-C) against emerging SARS-CoV-2 variants. Therefore, we evaluated neutralizing antibody responses in paired plasma and endotracheal aspirates of pediatric severe, acute COVID-19 or MIS-C patients against SARS-CoV-2 WA1/2020, as well as against variants of concern (VOCs). Neutralizing antibody responses against the SARS-CoV-2 WA1/2020 strain in pediatric plasma were 2-fold or 35-fold higher compared with the matched endotracheal aspirate in COVID-19 or MIS-C patients, respectively. In contrast to plasma, neutralizing antibody responses against the VOCs and variants of interest (VOIs) in endotracheal aspirates were lower, with only one endotracheal aspirate demonstrating neutralizing titers against the Iota, Kappa, Beta, Gamma, and Omicron variants. In conclusion, our findings suggest that children and adolescents with severe COVID-19 or MIS-C have weak mucosal neutralizing antibodies in the trachea against circulating SARS-CoV-2 Omicron and other VOCs, which may have implications for recovery and for re-infection with emerging SARS-CoV-2 variants.

7.
MMWR Morb Mortal Wkly Rep ; 71(7): 264-270, 2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1689712

ABSTRACT

COVID-19 vaccination is recommended for persons who are pregnant, breastfeeding, trying to get pregnant now, or who might become pregnant in the future, to protect them from COVID-19.§ Infants are at risk for life-threatening complications from COVID-19, including acute respiratory failure (1). Evidence from other vaccine-preventable diseases suggests that maternal immunization can provide protection to infants, especially during the high-risk first 6 months of life, through passive transplacental antibody transfer (2). Recent studies of COVID-19 vaccination during pregnancy suggest the possibility of transplacental transfer of SARS-CoV-2-specific antibodies that might provide protection to infants (3-5); however, no epidemiologic evidence currently exists for the protective benefits of maternal immunization during pregnancy against COVID-19 in infants. The Overcoming COVID-19 network conducted a test-negative, case-control study at 20 pediatric hospitals in 17 states during July 1, 2021-January 17, 2022, to assess effectiveness of maternal completion of a 2-dose primary mRNA COVID-19 vaccination series during pregnancy against COVID-19 hospitalization in infants. Among 379 hospitalized infants aged <6 months (176 with COVID-19 [case-infants] and 203 without COVID-19 [control-infants]), the median age was 2 months, 21% had at least one underlying medical condition, and 22% of case- and control-infants were born premature (<37 weeks gestation). Effectiveness of maternal vaccination during pregnancy against COVID-19 hospitalization in infants aged <6 months was 61% (95% CI = 31%-78%). Completion of a 2-dose mRNA COVID-19 vaccination series during pregnancy might help prevent COVID-19 hospitalization among infants aged <6 months.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Immunity, Maternally-Acquired , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , /immunology , Case-Control Studies , Female , Hospitals, Pediatric , Humans , Immunization, Passive , Infant , Infant, Newborn , Pregnancy , United States/epidemiology
8.
iScience ; 25(2): 103760, 2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1683208

ABSTRACT

Impressive global efforts have identified both rare and common gene variants associated with severe COVID-19 using sequencing technologies. However, these studies lack the sensitivity to accurately detect several classes of variants, especially large structural variants (SVs), which account for a substantial proportion of genetic diversity including clinically relevant variation. We performed optical genome mapping on 52 severely ill COVID-19 patients to identify rare/unique SVs as decisive predisposition factors associated with COVID-19. We identified 7 SVs involving genes implicated in two key host-viral interaction pathways: innate immunity and inflammatory response, and viral replication and spread in nine patients, of which SVs in STK26 and DPP4 genes are the most intriguing candidates. This study is the first to systematically assess the potential role of SVs in the pathogenesis of COVID-19 severity and highlights the need to evaluate SVs along with sequencing variants to comprehensively associate genomic information with interindividual variability in COVID-19 phenotypes.

9.
Nat Immunol ; 23(2): 177-185, 2022 02.
Article in English | MEDLINE | ID: covidwho-1671601

ABSTRACT

Children and adolescents exhibit a broad range of clinical outcomes from SARS-CoV-2 infection, with the majority having minimal to mild symptoms. Additionally, some succumb to a severe hyperinflammatory post-infectious complication called multisystem inflammatory syndrome in children (MIS-C), predominantly affecting previously healthy individuals. Studies characterizing the immunological differences associated with these clinical outcomes have identified pathways important for host immunity to SARS-CoV-2 and innate modulators of disease severity. In this Review, we delineate the immunological mechanisms underlying the spectrum of pediatric immune response to SARS-CoV-2 infection in comparison with that of adults.


Subject(s)
COVID-19/complications , COVID-19/immunology , Immunity, Innate , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , Adolescent , Adolescent Development , Age Factors , Asymptomatic Diseases , COVID-19/diagnosis , COVID-19/virology , Child , Child Development , Comorbidity , Host-Pathogen Interactions , Humans , Risk Factors , SARS-CoV-2/pathogenicity , Severity of Illness Index , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/virology
10.
MMWR Morb Mortal Wkly Rep ; 71(2): 52-58, 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1622893

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a severe postinfectious hyperinflammatory condition, which generally occurs 2-6 weeks after a typically mild or asymptomatic infection with SARS-CoV-2, the virus that causes COVID-19 (1-3). In the United States, the BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine is currently authorized for use in children and adolescents aged 5-15 years under an Emergency Use Authorization and is fully licensed by the Food and Drug Administration for persons aged ≥16 years (4). Prelicensure randomized trials in persons aged ≥5 years documented high vaccine efficacy and immunogenicity (5),§ and real-world studies in persons aged 12-18 years demonstrated high vaccine effectiveness (VE) against severe COVID-19 (6). Recent evidence suggests that COVID-19 vaccination is associated with lower MIS-C incidence among adolescents (7); however, VE of the 2-dose Pfizer-BioNTech regimen against MIS-C has not been evaluated. The effectiveness of 2 doses of Pfizer-BioNTech vaccine received ≥28 days before hospital admission in preventing MIS-C was assessed using a test-negative case-control design¶ among hospitalized patients aged 12-18 years at 24 pediatric hospitals in 20 states** during July 1-December 9, 2021, the period when most MIS-C patients could be temporally linked to SARS-CoV-2 B.1.617.2 (Delta) variant predominance. Patients with MIS-C (case-patients) and two groups of hospitalized controls matched to case-patients were evaluated: test-negative controls had at least one COVID-19-like symptom and negative SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) or antigen-based assay results, and syndrome-negative controls were hospitalized patients without COVID-19-like illness. Among 102 MIS-C case-patients and 181 hospitalized controls, estimated effectiveness of 2 doses of Pfizer-BioNTech vaccine against MIS-C was 91% (95% CI = 78%-97%). All 38 MIS-C patients requiring life support were unvaccinated. Receipt of 2 doses of the Pfizer-BioNTech vaccine is associated with a high level of protection against MIS-C in persons aged 12-18 years, highlighting the importance of vaccination among all eligible children.


Subject(s)
/therapeutic use , COVID-19/complications , Systemic Inflammatory Response Syndrome/drug therapy , Adolescent , COVID-19/drug therapy , Case-Control Studies , Child , Female , Hospitalization/statistics & numerical data , Humans , Male , Patient Acuity , SARS-CoV-2/immunology , United States/epidemiology
11.
J Pediatric Infect Dis Soc ; 11(5): 191-198, 2022 May 30.
Article in English | MEDLINE | ID: covidwho-1621636

ABSTRACT

BACKGROUND: It is unclear how acute coronavirus disease 2019 (COVID-19)-directed therapies are used in children with life-threatening COVID-19 in US hospitals. We described characteristics of children hospitalized in the intensive care unit or step-down unit (ICU/SDU) who received COVID-19-directed therapies and the specific therapies administered. METHODS: Between March 15, 2020 and December 27, 2020, children <18 years of age in the ICU/SDU with acute COVID-19 at 48 pediatric hospitals in the United States were identified. Demographics, laboratory values, and clinical course were compared in children who did and did not receive COVID-19-directed therapies. Trends in COVID-19-directed therapies over time were evaluated. RESULTS: Of 424 children in the ICU/SDU, 235 (55%) received COVID-19-directed therapies. Children who received COVID-19-directed therapies were older than those who did not receive COVID-19-directed therapies (13.3 [5.6-16.2] vs 9.8 [0.65-15.9] years), more had underlying medical conditions (188 [80%] vs 104 [55%]; difference = 25% [95% CI: 16% to 34%]), more received respiratory support (206 [88%] vs 71 [38%]; difference = 50% [95% CI: 34% to 56%]), and more died (8 [3.4%] vs 0). Of the 235 children receiving COVID-19-directed therapies, 172 (73%) received systemic steroids and 150 (64%) received remdesivir, with rising remdesivir use over the study period (14% in March/April to 57% November/December). CONCLUSION: Despite the lack of pediatric data evaluating treatments for COVID-19 in critically ill children, more than half of children requiring intensive or high acuity care received COVID-19-directed therapies.


Subject(s)
COVID-19 , COVID-19/drug therapy , Child , Critical Illness , Hospitalization , Hospitals, Pediatric , Humans , Intensive Care Units , United States
12.
N Engl J Med ; 386(8): 713-723, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1621316

ABSTRACT

BACKGROUND: The increasing incidence of pediatric hospitalizations associated with coronavirus disease 2019 (Covid-19) caused by the B.1.617.2 (delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the United States has offered an opportunity to assess the real-world effectiveness of the BNT162b2 messenger RNA vaccine in adolescents between 12 and 18 years of age. METHODS: We used a case-control, test-negative design to assess vaccine effectiveness against Covid-19 resulting in hospitalization, admission to an intensive care unit (ICU), the use of life-supporting interventions (mechanical ventilation, vasopressors, and extracorporeal membrane oxygenation), or death. Between July 1 and October 25, 2021, we screened admission logs for eligible case patients with laboratory-confirmed Covid-19 at 31 hospitals in 23 states. We estimated vaccine effectiveness by comparing the odds of antecedent full vaccination (two doses of BNT162b2) in case patients as compared with two hospital-based control groups: patients who had Covid-19-like symptoms but negative results on testing for SARS-CoV-2 (test-negative) and patients who did not have Covid-19-like symptoms (syndrome-negative). RESULTS: A total of 445 case patients and 777 controls were enrolled. Overall, 17 case patients (4%) and 282 controls (36%) had been fully vaccinated. Of the case patients, 180 (40%) were admitted to the ICU, and 127 (29%) required life support; only 2 patients in the ICU had been fully vaccinated. The overall effectiveness of the BNT162b2 vaccine against hospitalization for Covid-19 was 94% (95% confidence interval [CI], 90 to 96); the effectiveness was 95% (95% CI, 91 to 97) among test-negative controls and 94% (95% CI, 89 to 96) among syndrome-negative controls. The effectiveness was 98% against ICU admission and 98% against Covid-19 resulting in the receipt of life support. All 7 deaths occurred in patients who were unvaccinated. CONCLUSIONS: Among hospitalized adolescent patients, two doses of the BNT162b2 vaccine were highly effective against Covid-19-related hospitalization and ICU admission or the receipt of life support. (Funded by the Centers for Disease Control and Prevention.).


Subject(s)
COVID-19/prevention & control , Adolescent , COVID-19/mortality , COVID-19/therapy , COVID-19 Testing , COVID-19 Vaccines , Case-Control Studies , Child , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary , Intensive Care Units , Life Support Care , Male , Patient Acuity , SARS-CoV-2 , United States
13.
iScience ; 2022.
Article in English | EuropePMC | ID: covidwho-1615353

ABSTRACT

Impressive global efforts have identified both rare and common gene variants associated with severe COVID-19 using sequencing technologies. However, these studies lack the sensitivity to accurately detect several classes of variants, especially large structural variants (SVs), which account for a substantial proportion of genetic diversity including clinically relevant variation. We performed optical genome mapping on 52 severely-ill COVID-19 patients to identify rare/unique SVs as decisive predisposition factors associated with COVID-19. We identified 7 SVs involving genes implicated in two key host-viral interaction pathways: innate immunity and inflammatory response, and viral replication and spread in 9 patients, of which SVs in STK26 and DPP4 genes are the most intriguing candidates. This study is the first to systematically assess the potential role of SVs in the pathogenesis of COVID-19 severity and highlights the need to evaluate SVs along with sequencing variants to comprehensively associate genomic information with inter-individual variability in COVID-19 phenotypes. Graphical

14.
Crit Care Clin ; 38(3): 571-586, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1616399

ABSTRACT

Severe complications related to COVID-19 occur infrequently in children and adolescents. these life-threatening complications are mainly acute respiratory failure from acute COVID-19 and multisystem inflammatory syndrome in children (MIS-C). MIS-C is a postinfectious complication occurring approximately 3 to 6 weeks mostly after an asymptomatic or mild SARS-CoV-2 infection. For both types of complications, supportive ICU care is often required. For MIS-C critical illness, immunomodulation is prescribed to reverse hyperinflammation and its cardiac and other sequelae.


Subject(s)
COVID-19 , Adolescent , COVID-19/complications , COVID-19/therapy , Child , Humans , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/therapy
15.
Pediatr Infect Dis J ; 41(3): e81-e86, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1594109

ABSTRACT

BACKGROUND: Previous studies of severe acute respiratory syndrome coronavirus 2 infection in infants have incompletely characterized factors associated with severe illness or focused on infants born to mothers with coronavirus disease 2019 (COVID-19). Here we highlight demographics, clinical characteristics and laboratory values that differ between infants with and without severe acute COVID-19. METHODS: Active surveillance was performed by the Overcoming COVID-19 network to identify children and adolescents with severe acute respiratory syndrome coronavirus 2-related illness hospitalized at 62 sites in 31 states from March 15 to December 27, 2020. We analyzed patients >7 days to <1 year old hospitalized with symptomatic acute COVID-19. RESULTS: We report 232 infants >7 days to <1 year of age hospitalized with acute symptomatic COVID-19 from 37 US hospitals in our cohort from March 15 to December 27, 2020. Among 630 cases of severe COVID-19 in patients >7 days to <18 years old, 128 (20.3%) were infants. In infants with severe illness from the entire study period, the median age was 2 months, 66% were from racial and ethnic minority groups, 66% were previously healthy, 73% had respiratory complications, 13% received mechanical ventilation and <1% died. CONCLUSIONS: Infants accounted for over a fifth of children <18 years of age hospitalized for severe acute COVID-19, commonly manifesting with respiratory symptoms and complications. Although most infants hospitalized with COVID-19 did not suffer significant complications, longer term outcomes remain unclear. Notably, 75% of infants with severe disease were <6 months of age in this cohort study period, which predated maternal COVID-19 vaccination, underscoring the importance of maternal vaccination for COVID-19 in protecting the mother and infant.


Subject(s)
COVID-19/complications , COVID-19/epidemiology , Child, Hospitalized/statistics & numerical data , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Infectious Disease Transmission, Vertical , Male , Pandemics , Pregnancy , Pregnancy Complications, Infectious/virology , SARS-CoV-2 , United States/epidemiology
16.
Vaccines (Basel) ; 10(1)2021 Dec 30.
Article in English | MEDLINE | ID: covidwho-1580345

ABSTRACT

A 12-year-old male was presented to the hospital with acute encephalopathy, headache, vomiting, diarrhea, and elevated troponin after recent COVID-19 vaccination. Two days prior to admission and before symptom onset, he received the second dose of the Pfizer-BioNTech COVID-19 vaccine. Symptoms developed within 24 h with worsening neurologic symptoms, necessitating admission to the pediatric intensive care unit. Brain magnetic resonance imaging within 16 h of admission revealed a cytotoxic splenial lesion of the corpus callosum (CLOCC). Nineteen days prior to admission, he developed erythema migrans, and completed an amoxicillin treatment course for clinical Lyme disease. However, Lyme antibody titers were negative on admission and nine days later, making active Lyme disease an unlikely explanation for his presentation to hospital. An extensive workup for other etiologies on cerebrospinal fluid and blood samples was negative, including infectious and autoimmune causes and known immune deficiencies. Three weeks after hospital discharge, all of his symptoms had dissipated, and he had a normal neurologic exam. Our report highlights a potential role of mRNA vaccine-induced immunity leading to MIS-C-like symptoms with cardiac involvement and a CLOCC in a recently vaccinated child and the complexity of establishing a causal association with vaccination. The child recovered without receipt of immune modulatory treatment.

18.
MMWR Morb Mortal Wkly Rep ; 70(42): 1483-1488, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1485569

ABSTRACT

Pfizer-BioNTech COVID-19 vaccine is authorized for use in children and adolescents aged 12-15 years and is licensed by the Food and Drug Administration (FDA) for persons aged ≥16 (1). A randomized placebo-controlled trial demonstrated an efficacy of 100% (95% confidence interval [CI] = 75.3%-100%) in preventing outpatient COVID-19 in persons aged 12-15 years (2); however, data among adolescents on vaccine effectiveness (VE) against COVID-19 in real-world settings are limited, especially among hospitalized patients. In early September 2021, U.S. pediatric COVID-19 hospitalizations reached the highest level during the pandemic (3,4). In a test-negative, case-control study at 19 pediatric hospitals in 16 states during June 1-September 30, 2021, the effectiveness of 2 doses of Pfizer-BioNTech vaccine against COVID-19 hospitalization was assessed among children and adolescents aged 12-18 years. Among 464 hospitalized persons aged 12-18 years (179 case-patients and 285 controls), the median age was 15 years, 72% had at least one underlying condition, including obesity, and 68% attended in-person school. Effectiveness of 2 doses of Pfizer-BioNTech vaccine against COVID-19 hospitalization was 93% (95% CI = 83%-97%), during the period when B.1.617.2 (Delta) was the predominant variant. This evaluation demonstrated that 2 doses of Pfizer-BioNTech vaccine are highly effective at preventing COVID-19 hospitalization among persons aged 12-18 years and reinforces the importance of vaccination to protect U.S. youths against severe COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Adolescent , COVID-19/epidemiology , Child , Female , Humans , Male , United States/epidemiology , Vaccines, Synthetic
19.
EClinicalMedicine ; 40: 101112, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1377702

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) consensus criteria were designed for maximal sensitivity and therefore capture patients with acute COVID-19 pneumonia. METHODS: We performed unsupervised clustering on data from 1,526 patients (684 labeled MIS-C by clinicians) <21 years old hospitalized with COVID-19-related illness admitted between 15 March 2020 and 31 December 2020. We compared prevalence of assigned MIS-C labels and clinical features among clusters, followed by recursive feature elimination to identify characteristics of potentially misclassified MIS-C-labeled patients. FINDINGS: Of 94 clinical features tested, 46 were retained for clustering. Cluster 1 patients (N = 498; 92% labeled MIS-C) were mostly previously healthy (71%), with mean age 7·2 ± 0·4 years, predominant cardiovascular (77%) and/or mucocutaneous (82%) involvement, high inflammatory biomarkers, and mostly SARS-CoV-2 PCR negative (60%). Cluster 2 patients (N = 445; 27% labeled MIS-C) frequently had pre-existing conditions (79%, with 39% respiratory), were similarly 7·4 ± 2·1 years old, and commonly had chest radiograph infiltrates (79%) and positive PCR testing (90%). Cluster 3 patients (N = 583; 19% labeled MIS-C) were younger (2·8 ± 2·0 y), PCR positive (86%), with less inflammation. Radiographic findings of pulmonary infiltrates and positive SARS-CoV-2 PCR accurately distinguished cluster 2 MIS-C labeled patients from cluster 1 patients. INTERPRETATION: Using a data driven, unsupervised approach, we identified features that cluster patients into a group with high likelihood of having MIS-C. Other features identified a cluster of patients more likely to have acute severe COVID-19 pulmonary disease, and patients in this cluster labeled by clinicians as MIS-C may be misclassified. These data driven phenotypes may help refine the diagnosis of MIS-C.

20.
J Allergy Clin Immunol ; 148(3): 732-738.e1, 2021 09.
Article in English | MEDLINE | ID: covidwho-1293879

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a pediatric complication of severe acute respiratory syndrome coronavirus 2 infection that is characterized by multiorgan inflammation and frequently by cardiovascular dysfunction. It occurs predominantly in otherwise healthy children. We previously reported haploinsufficiency of suppressor of cytokine signaling 1 (SOCS1), a negative regulator of type I and II interferons, as a genetic risk factor for MIS-C. OBJECTIVES: We aimed to identify additional genetic mechanisms underlying susceptibility to severe acute respiratory syndrome coronavirus 2-associated MIS-C. METHODS: In a single-center, prospective cohort study, whole exome sequencing was performed on patients with MIS-C. The impact of candidate variants was tested by using patients' PBMCs obtained at least 7 months after recovery. RESULTS: We enrolled 18 patients with MIS-C (median age = 8 years; interquartile range = 5-12.25 years), of whom 89% had no conditions other than obesity. In 2 boys with no significant infection history, we identified and validated hemizygous deleterious defects in XIAP, encoding X-linked inhibitor of apoptosis, and CYBB, encoding cytochrome b-245, beta subunit. Including the previously reported SOCS1 haploinsufficiency, a genetic diagnosis was identified in 3 of 18 patients (17%). In contrast to patients with mild COVID-19, patients with defects in SOCS1, XIAP, or CYBB exhibit an inflammatory immune cell transcriptome with enrichment of differentially expressed genes in pathways downstream of IL-18, oncostatin M, and nuclear factor κB, even after recovery. CONCLUSIONS: Although inflammatory disorders are rare in the general population, our cohort of patients with MIS-C was enriched for monogenic susceptibility to inflammation. Our results support the use of next-generation sequencing in previously healthy children who develop MIS-C.


Subject(s)
COVID-19/etiology , COVID-19/metabolism , Disease Susceptibility , Genetic Predisposition to Disease , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/metabolism , Biomarkers , COVID-19/complications , COVID-19/diagnosis , COVID-19/virology , Child , Child, Preschool , Cytokines/metabolism , Female , Host-Pathogen Interactions/immunology , Humans , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL