ABSTRACT
BACKGROUND: Veno-venous extracorporeal life support (V-V ECLS or V-V ECMO) has been adopted as a rescue support in severe cases of COVID-19 ARDS. Initial reports on the use of V-V ECLS in COVID-19 patients reported very high mortality rates (57%-94%), but subsequent studies showed much lower rates (30%-40%). The aim of this study is to analyze demographic features, clinical course and outcomes of COVID-19 treated with V-V ECLS during the Italian 'third wave', in which the alpha variant was prevalent in the country. METHODS: Single-center, retrospective observational study conducted at the ECLS referral center of a teaching hospital in Italy from January 1st, 2021 and October 31st, 2021. RESULTS: Between January and October 2021, 18 consecutive adult patients who underwent V-V ECLS for severe ARDS due to COVID-19 were enrolled. Thirteen patients (72.2%) were male, and their median age was 50 years; the median P/F ratio before V-V ECLS initiation was 43 mm Hg (IQR, 40; 56), and the median RESP score was 0.5 (IQR, -2.25; 1.0). The mortality rate at 90 days was 55.6, compared to 55.7% in non-COVID patients in our center (p > 0.05); the median duration of ECLS was 29 days (IQR, 11; 32), compared to 10 days (IQR, 8; 15), in non-COVID patients (p = 0.004). Incidence of complications was high. CONCLUSIONS: In patients with COVID-19 ARDS receiving V-V ECLS, unadjusted mortality was similar to pre-pandemic V-V ECLS cases, while the duration of ECLS was almost three times longer and with frequent complications. This could be partly explained by the selection of very sick patients at the baseline that evolved to multiorgan failure during the course of ECLS.
ABSTRACT
The definition of the acute respiratory distress syndrome (ARDS) has a somewhat controversial history, with some even questioning the need for the term ARDS. This controversy has been amplified by the COVID-19 pandemic given the marked increase in the incidence of ARDS, the relatively new treatment modalities which do not fit neatly with the Berlin definition, and the difficulty in resource-limited settings in making the diagnosis. We propose that attempts to revise the definition of ARDS should apply the framework originally developed by psychologists and social scientists and used by other medical disciplines to generate and assess definitions of clinical syndromes that do not have gold standards. This framework is structured around measures of reliability, feasibility, and validity. Future revisions of the definition of ARDS should contain: the purpose, the methodology, and the framework for empirically testing any proposed definition. Attempts to revise critical illness syndromes' definitions usually hope to make them "better"; our recommendation is that future attempts use the same criteria used by other fields in defining what "better" means. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ABSTRACT
BACKGROUND: Environmental contamination by SARS-CoV-2 from patients with COVID-19 undergoing noninvasive ventilation (NIV) in the ICU is still under investigation. This study set out to investigate the presence of SARS-CoV-2 on surfaces near subjects receiving NIV in the ICU under controlled conditions (ie, use of dual-limb circuits, filters, adequate room ventilation). METHODS: This was a single-center, prospective, observational study in the ICU of a tertiary teaching hospital. Four surface sampling areas, at increasing distance from subject's face, were identified; and each one was sampled at fixed intervals: 6, 12, and 24 h. The presence of SARS-CoV-2 was detected with real-time reverse transcriptase-polymerase-chain-reaction (RT-PCR) test on environmental swabs; the RT-PCR assay targeted the SARS-CoV-2 virus nucleocapsid N1 and N2 genes and the human RNase P gene as internal control. RESULTS: In a total of 256 collected samples, none were positive for SARS-CoV-2 genetic material, whereas 21 samples (8.2%) tested positive for RNase P, thus demonstrating the presence of genetic material unrelated to SARS-CoV-2. CONCLUSIONS: Our data show that application of NIV in an appropriate environment and with correct precautions leads to no sign of surface environmental contamination. Accordingly, our data support the idea that use of NIV in the ICU is safe both for health care workers and for other patients.
ABSTRACT
The aim of this retrospective multicenter observational study is to test the feasibility and safety of a combined extracorporeal CO2 removal (ECCO2R) plus renal replacement therapy (RRT) system to use an ultraprotective ventilator setting while maintaining (1) an effective support of renal function and (2) values of pH within the physiologic limits in a cohort of coronavirus infectious disease 2019 (COVID-19) patients. Among COVID-19 patients admitted to the intensive care unit of 9 participating hospitals, 27 patients with acute respiratory distress syndrome (ARDS) and acute kidney injury (AKI) requiring invasive mechanical ventilation undergoing ECCO2R-plus-RRT treatment were included in the analysis. The treatment allowed to reduce VT from 6.0 ± 0.6 mL/kg at baseline to 4.8 ± 0.8, 4.6 ± 1.0, and 4.3 ± 0.3 mL/kg, driving pressure (ΔP) from 19.8 ± 2.5 cm H2O to 14.8 ± 3.6, 14.38 ± 4.1 and 10.2 ± 1.6 cm H2O after 24 hours, 48 hours, and at discontinuation of ECCO2R-plus-RRT (T3), respectively (p < 0.001). PaCO2 and pH remained stable. Plasma creatinine decreased over the study period from 3.30 ± 1.27 to 1.90 ± 1.30 and 1.27 ± 0.90 mg/dL after 24 and 48 hours of treatment, respectively (p < 0.01). No patient-related events associated with the extracorporeal system were reported. These data show that in patients with COVID-19-induced ARDS and AKI, ECCO2R-plus-RRT is effective in allowing ultraprotective ventilator settings while maintaining an effective support of renal function and values of pH within physiologic limits.
ABSTRACT
BACKGROUND: Noninvasive respiratory support (NIRS) has been diffusely employed outside the intensive care unit (ICU) to face the high request of ventilatory support due to the massive influx of patients with acute respiratory failure (ARF) caused by coronavirus-19 disease (COVID-19). We sought to summarize the evidence on clinically relevant outcomes in COVID-19 patients supported by NIV outside the ICU. METHODS: We searched PUBMED®, EMBASE®, and the Cochrane Controlled Clinical trials register, along with medRxiv and bioRxiv repositories for pre-prints, for observational studies and randomized controlled trials, from inception to the end of February 2021. Two authors independently selected the investigations according to the following criteria: (1) observational study or randomized clinical trials enrolling ≥ 50 hospitalized patients undergoing NIRS outside the ICU, (2) laboratory-confirmed COVID-19, and (3) at least the intra-hospital mortality reported. Preferred Reporting Items for Systematic reviews and Meta-analysis guidelines were followed. Data extraction was independently performed by two authors to assess: investigation features, demographics and clinical characteristics, treatments employed, NIRS regulations, and clinical outcomes. Methodological index for nonrandomized studies tool was applied to determine the quality of the enrolled studies. The primary outcome was to assess the overall intra-hospital mortality of patients under NIRS outside the ICU. The secondary outcomes included the proportions intra-hospital mortalities of patients who underwent invasive mechanical ventilation following NIRS failure and of those with 'do-not-intubate' (DNI) orders. RESULTS: Seventeen investigations (14 peer-reviewed and 3 pre-prints) were included with a low risk of bias and a high heterogeneity, for a total of 3377 patients. The overall intra-hospital mortality of patients receiving NIRS outside the ICU was 36% [30-41%]. 26% [21-30%] of the patients failed NIRS and required intubation, with an intra-hospital mortality rising to 45% [36-54%]. 23% [15-32%] of the patients received DNI orders with an intra-hospital mortality of 72% [65-78%]. Oxygenation on admission was the main source of between-study heterogeneity. CONCLUSIONS: During COVID-19 outbreak, delivering NIRS outside the ICU revealed as a feasible strategy to cope with the massive demand of ventilatory assistance. REGISTRATION: PROSPERO, https://www.crd.york.ac.uk/prospero/ , CRD42020224788, December 11, 2020.
Subject(s)
COVID-19/therapy , Noninvasive Ventilation , Respiratory Distress Syndrome/therapy , COVID-19/mortality , Continuous Positive Airway Pressure , Hospital Mortality , Humans , Intensive Care Units , Intubation/statistics & numerical data , Observational Studies as Topic , Randomized Controlled Trials as Topic , Respiration, Artificial , Respiratory Distress Syndrome/virologySubject(s)
COVID-19 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Intensive Care Units , SARS-CoV-2 , VaccinationABSTRACT
Rationale: The "Berlin definition" of acute respiratory distress syndrome (ARDS) does not allow inclusion of patients receiving high-flow nasal oxygen (HFNO). However, several articles have proposed that criteria for defining ARDS should be broadened to allow inclusion of patients receiving HFNO. Objectives: To compare the proportion of patients fulfilling ARDS criteria during HFNO and soon after intubation, and 28-day mortality between patients treated exclusively with HFNO and patients transitioned from HFNO to invasive mechanical ventilation (IMV). Methods: From previously published studies, we analyzed patients with coronavirus disease (COVID-19) who had PaO2/FiO2 of ⩽300 while treated with ⩾40 L/min HFNO, or noninvasive ventilation (NIV) with positive end-expiratory pressure of ⩾5 cm H2O (comparator). In patients transitioned from HFNO/NIV to invasive mechanical ventilation (IMV), we compared ARDS severity during HFNO/NIV and soon after IMV. We compared 28-day mortality in patients treated exclusively with HFNO/NIV versus patients transitioned to IMV. Measurements and Main Results: We analyzed 184 and 131 patients receiving HFNO or NIV, respectively. A total of 112 HFNO and 69 NIV patients transitioned to IMV. Of those, 104 (92.9%) patients on HFNO and 66 (95.7%) on NIV continued to have PaO2/FiO2 ⩽300 under IMV. Twenty-eight-day mortality in patients who remained on HFNO was 4.2% (3/72), whereas in patients transitioned from HFNO to IMV, it was 28.6% (32/112) (P < 0.001). Twenty-eight-day mortality in patients who remained on NIV was 1.6% (1/62), whereas in patients who transitioned from NIV to IMV, it was 44.9% (31/69) (P < 0.001). Overall mortality was 19.0% (35/184) and 24.4% (32/131) for HFNO and NIV, respectively (P = 0.2479). Conclusions: Broadening the ARDS definition to include patients on HFNO with PaO2/FiO2 ⩽300 may identify patients at earlier stages of disease but with lower mortality.
Subject(s)
COVID-19/therapy , Hypoxia/therapy , Oxygen Inhalation Therapy/methods , Respiratory Distress Syndrome/therapy , Aged , COVID-19/mortality , COVID-19/physiopathology , Female , Humans , Hypoxia/diagnosis , Hypoxia/mortality , Hypoxia/virology , Italy/epidemiology , Male , Middle Aged , Oxygen Inhalation Therapy/mortality , Patient Acuity , Respiration, Artificial/methods , Respiration, Artificial/mortality , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/virology , Treatment OutcomeABSTRACT
BACKGROUND: Pathophysiological features of coronavirus disease 2019-associated acute respiratory distress syndrome (COVID-19 ARDS) were indicated to be somewhat different from those described in nonCOVID-19 ARDS, because of relatively preserved compliance of the respiratory system despite marked hypoxemia. We aim ascertaining whether respiratory system static compliance (Crs), driving pressure (DP), and tidal volume normalized for ideal body weight (VT/kg IBW) at the 1st day of controlled mechanical ventilation are associated with intensive care unit (ICU) mortality in COVID-19 ARDS. METHODS: Observational multicenter cohort study. All consecutive COVID-19 adult patients admitted to 25 ICUs belonging to the COVID-19 VENETO ICU network (February 28th-April 28th, 2020), who received controlled mechanical ventilation, were screened. Only patients fulfilling ARDS criteria and with complete records of Crs, DP and VT/kg IBW within the 1st day of controlled mechanical ventilation were included. Crs, DP and VT/kg IBW were collected in sedated, paralyzed and supine patients. RESULTS: A total of 704 COVID-19 patients were screened and 241 enrolled. Seventy-one patients (29%) died in ICU. The logistic regression analysis showed that: (1) Crs was not linearly associated with ICU mortality (p value for nonlinearity = 0.01), with a greater risk of death for values < 48 ml/cmH2O; (2) the association between DP and ICU mortality was linear (p value for nonlinearity = 0.68), and increasing DP from 10 to 14 cmH2O caused significant higher odds of in-ICU death (OR 1.45, 95% CI 1.06-1.99); (3) VT/kg IBW was not associated with a significant increase of the risk of death (OR 0.92, 95% CI 0.55-1.52). Multivariable analysis confirmed these findings. CONCLUSIONS: Crs < 48 ml/cmH2O was associated with ICU mortality, while DP was linearly associated with mortality. DP should be kept as low as possible, even in the case of relatively preserved Crs, irrespective of VT/kg IBW, to reduce the risk of death.
Subject(s)
COVID-19/mortality , Respiration, Artificial , Respiratory Distress Syndrome/mortality , Aged , Female , Humans , Intensive Care Units , Intubation , Italy , Male , Middle Aged , Respiratory Distress Syndrome/virology , Tidal VolumeABSTRACT
Importance: High-flow nasal oxygen is recommended as initial treatment for acute hypoxemic respiratory failure and is widely applied in patients with COVID-19. Objective: To assess whether helmet noninvasive ventilation can increase the days free of respiratory support in patients with COVID-19 compared with high-flow nasal oxygen alone. Design, Setting, and Participants: Multicenter randomized clinical trial in 4 intensive care units (ICUs) in Italy between October and December 2020, end of follow-up February 11, 2021, including 109 patients with COVID-19 and moderate to severe hypoxemic respiratory failure (ratio of partial pressure of arterial oxygen to fraction of inspired oxygen ≤200). Interventions: Participants were randomly assigned to receive continuous treatment with helmet noninvasive ventilation (positive end-expiratory pressure, 10-12 cm H2O; pressure support, 10-12 cm H2O) for at least 48 hours eventually followed by high-flow nasal oxygen (n = 54) or high-flow oxygen alone (60 L/min) (n = 55). Main Outcomes and Measures: The primary outcome was the number of days free of respiratory support within 28 days after enrollment. Secondary outcomes included the proportion of patients who required endotracheal intubation within 28 days from study enrollment, the number of days free of invasive mechanical ventilation at day 28, the number of days free of invasive mechanical ventilation at day 60, in-ICU mortality, in-hospital mortality, 28-day mortality, 60-day mortality, ICU length of stay, and hospital length of stay. Results: Among 110 patients who were randomized, 109 (99%) completed the trial (median age, 65 years [interquartile range {IQR}, 55-70]; 21 women [19%]). The median days free of respiratory support within 28 days after randomization were 20 (IQR, 0-25) in the helmet group and 18 (IQR, 0-22) in the high-flow nasal oxygen group, a difference that was not statistically significant (mean difference, 2 days [95% CI, -2 to 6]; P = .26). Of 9 prespecified secondary outcomes reported, 7 showed no significant difference. The rate of endotracheal intubation was significantly lower in the helmet group than in the high-flow nasal oxygen group (30% vs 51%; difference, -21% [95% CI, -38% to -3%]; P = .03). The median number of days free of invasive mechanical ventilation within 28 days was significantly higher in the helmet group than in the high-flow nasal oxygen group (28 [IQR, 13-28] vs 25 [IQR 4-28]; mean difference, 3 days [95% CI, 0-7]; P = .04). The rate of in-hospital mortality was 24% in the helmet group and 25% in the high-flow nasal oxygen group (absolute difference, -1% [95% CI, -17% to 15%]; P > .99). Conclusions and Relevance: Among patients with COVID-19 and moderate to severe hypoxemia, treatment with helmet noninvasive ventilation, compared with high-flow nasal oxygen, resulted in no significant difference in the number of days free of respiratory support within 28 days. Further research is warranted to determine effects on other outcomes, including the need for endotracheal intubation. Trial Registration: ClinicalTrials.gov Identifier: NCT04502576.
Subject(s)
COVID-19/complications , Intubation, Intratracheal/statistics & numerical data , Noninvasive Ventilation/instrumentation , Oxygen Inhalation Therapy/methods , Respiratory Insufficiency/therapy , Aged , COVID-19/mortality , COVID-19/therapy , Female , Hospital Mortality , Humans , Hypoxia/etiology , Male , Middle Aged , Noninvasive Ventilation/methods , Respiratory Insufficiency/etiology , Treatment FailureABSTRACT
INTRODUCTION: The severe acute respiratory syndrome-coronavirus 2 outbreak spread rapidly in Italy and the lack of intensive care unit (ICU) beds soon became evident, forcing the application of noninvasive respiratory support (NRS) outside the ICU, raising concerns over staff contamination. We aimed to analyse the safety of the hospital staff and the feasibility and outcomes of NRS applied to patients outside the ICU. METHODS: In this observational study, data from 670 consecutive patients with confirmed coronavirus disease 2019 referred to pulmonology units in nine hospitals between March 1 and May 10, 2020 were analysed. Data collected included medication, mode and usage of NRS (i.e. high-flow nasal cannula (HFNC), continuous positive airway pressure (CPAP), noninvasive ventilation (NIV)), length of stay in hospital, endotracheal intubation (ETI) and deaths. RESULTS: 42 (11.1%) healthcare workers tested positive for infection, but only three of them required hospitalisation. Data are reported for all patients (69.3% male), whose mean±sd age was 68±13â years. The arterial oxygen tension/inspiratory oxygen fraction ratio at baseline was 152±79, and the majority (49.3%) of patients were treated with CPAP. The overall unadjusted 30-day mortality rate was 26.9%, with 16%, 30% and 30% for HFNC, CPAP and NIV, respectively, while the total ETI rate was 27%, with 29%, 25% and 28%, respectively; the relative probability of death was not related to the NRS used after adjustment for confounders. ETI and length of stay were not different among the groups. Mortality rate increased with age and comorbidity class progression. CONCLUSIONS: The application of NRS outside the ICU is feasible and associated with favourable outcomes. Nonetheless, it was associated with a risk of staff contamination.
Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Coronavirus Infections/therapy , Critical Care , Noninvasive Ventilation , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Aged , Aged, 80 and over , COVID-19 , Cohort Studies , Coronavirus Infections/mortality , Feasibility Studies , Female , Hospital Mortality , Humans , Length of Stay , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , SARS-CoV-2ABSTRACT
Rationale: Treatment with noninvasive ventilation (NIV) in coronavirus disease (COVID-19) is frequent. Shortage of intensive care unit (ICU) beds led clinicians to deliver NIV also outside ICUs. Data about the use of NIV in COVID-19 is limited.Objectives: To describe the prevalence and clinical characteristics of patients with COVID-19 treated with NIV outside the ICUs. To investigate the factors associated with NIV failure (need for intubation or death).Methods: In this prospective, single-day observational study, we enrolled adult patients with COVID-19 who were treated with NIV outside the ICU from 31 hospitals in Lombardy, Italy.Results: We collected data on demographic and clinical characteristics, ventilatory management, and patient outcomes. Of 8,753 patients with COVID-19 present in the hospitals on the study day, 909 (10%) were receiving NIV outside the ICU. A majority of patients (778/909; 85%) patients were treated with continuous positive airway pressure (CPAP), which was delivered by helmet in 617 (68%) patients. NIV failed in 300 patients (37.6%), whereas 498 (62.4%) patients were discharged alive without intubation. Overall mortality was 25%. NIV failure occurred in 152/284 (53%) patients with an arterial oxygen pressure (PaO2)/fraction of inspired oxygen (FiO2) ratio <150 mm Hg. Higher C-reactive protein and lower PaO2/FiO2 and platelet counts were independently associated with increased risk of NIV failure.Conclusions: The use of NIV outside the ICUs was common in COVID-19, with a predominant use of helmet CPAP, with a rate of success >60% and close to 75% in full-treatment patients. C-reactive protein, PaO2/FiO2, and platelet counts were independently associated with increased risk of NIV failure.Clinical trial registered with ClinicalTrials.gov (NCT04382235).
Subject(s)
COVID-19/therapy , Continuous Positive Airway Pressure/methods , Hospital Mortality , Hypoxia/therapy , Intubation, Intratracheal/statistics & numerical data , Noninvasive Ventilation/methods , Patients' Rooms , Respiratory Insufficiency/therapy , Aged , Cannula , Female , Humans , Intensive Care Units , Italy , Male , Middle Aged , Oxygen Inhalation Therapy , Prospective Studies , SARS-CoV-2 , Treatment FailureSubject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Interferons/therapeutic use , COVID-19/virology , Critical Illness/therapy , Drug Therapy, Combination , Humans , Hydroxychloroquine/therapeutic use , Interferon beta-1a/therapeutic use , Lopinavir/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2/isolation & purification , Viral Load/drug effectsABSTRACT
Coronavirus disease 2019 (COVID-19)-associated acute respiratory distress syndrome (ARDS) is associated with high mortality. Lung-protective ventilation is the current standard of care in patients with ARDS, but it might lead to hypercapnia, which is independently associated with worse outcomes. Extracorporeal carbon dioxide removal (ECCO2R) has been proposed as an adjuvant therapy to avoid progression of clinical severity and limit further ventilator-induced lung injury, but its use in COVID-19 has not been described yet. Acute kidney injury requiring renal replacement therapy (RRT) is common among critically ill COVID-19 patients. In centers with available dialysis, low-flow ECCO2R (<500 mL/min) using RRT platforms could be carried out by dialysis specialists and might be an option to efficiently allocate resources during the COVID-19 pandemic for patients with hypercapnia as the main indication. Here, we report the feasibility, safety, and efficacy of ECCO2R using an RRT platform to provide either standalone ECCO2R or ECCO2R combined with RRT in four hypercapnic patients with moderate ARDS. A randomized clinical trial is required to assess the overall benefit and harm. Clinical Trial Registration: ClinicalTrials.gov. Unique identifier: NCT04351906.
Subject(s)
COVID-19 , Respiratory Distress Syndrome , Cohort Studies , Humans , SARS-CoV-2 , Tomography, X-Ray ComputedABSTRACT
BACKGROUND: A large proportion of patients with coronavirus disease 2019 (COVID-19) develop severe respiratory failure requiring admission to the intensive care unit (ICU) and about 80% of them need mechanical ventilation (MV). These patients show great complexity due to multiple organ involvement and a dynamic evolution over time; moreover, few information is available about the risk factors that may contribute to increase the time course of mechanical ventilation.The primary objective of this study is to investigate the risk factors associated with the inability to liberate COVID-19 patients from mechanical ventilation. Due to the complex evolution of the disease, we analyzed both pulmonary variables and occurrence of non-pulmonary complications during mechanical ventilation. The secondary objective of this study was the evaluation of risk factors for ICU mortality. METHODS: This multicenter prospective observational study enrolled 391 patients from fifteen COVID-19 dedicated Italian ICUs which underwent invasive mechanical ventilation for COVID-19 pneumonia. Clinical and laboratory data, ventilator parameters, occurrence of organ dysfunction, and outcome were recorded. The primary outcome measure was 28 days ventilator-free days and the liberation from MV at 28 days was studied by performing a competing risks regression model on data, according to the method of Fine and Gray; the event death was considered as a competing risk. RESULTS: Liberation from mechanical ventilation was achieved in 53.2% of the patients (208/391). Competing risks analysis, considering death as a competing event, demonstrated a decreased sub-hazard ratio for liberation from mechanical ventilation (MV) with increasing age and SOFA score at ICU admission, low values of PaO2/FiO2 ratio during the first 5 days of MV, respiratory system compliance (CRS) lower than 40 mL/cmH2O during the first 5 days of MV, need for renal replacement therapy (RRT), late-onset ventilator-associated pneumonia (VAP), and cardiovascular complications.ICU mortality during the observation period was 36.1% (141/391). Similar results were obtained by the multivariate logistic regression analysis using mortality as a dependent variable. CONCLUSIONS: Age, SOFA score at ICU admission, CRS, PaO2/FiO2, renal and cardiovascular complications, and late-onset VAP were all independent risk factors for prolonged mechanical ventilation in patients with COVID-19. TRIAL REGISTRATION: NCT04411459.
ABSTRACT
BACKGROUND: A Covid-19 outbreak developed in Lombardy, Veneto and Emilia-Romagna (Italy) at the end of February 2020. Fear of an imminent saturation of available ICU beds generated the notion that rationing of intensive care resources could have been necessary. RESULTS: In order to evaluate the impact of Covid-19 on the ICU capacity to manage critically ill patients, we performed a retrospective analysis of the first 2 weeks of the outbreak (February 24-March 8). Data were collected from regional registries and from a case report form sent to participating sites. ICU beds increased from 1545 to 1989 (28.7%), and patients receiving respiratory support outside the ICU increased from 4 (0.6%) to 260 (37.0%). Patients receiving respiratory support outside the ICU were significantly older [65 vs. 77 years], had more cerebrovascular (5.8 vs. 13.1%) and renal (5.3 vs. 10.0%) comorbidities and less obesity (31.4 vs. 15.5%) than patients admitted to the ICU. PaO2/FiO2 ratio, respiratory rate and arterial pH were higher [165 vs. 244; 20 vs. 24 breath/min; 7.40 vs. 7.46] and PaCO2 and base excess were lower [34 vs. 42 mmHg; 0.60 vs. 1.30] in patients receiving respiratory support outside the ICU than in patients admitted to the ICU, respectively. CONCLUSIONS: Increase in ICU beds and use of out-of-ICU respiratory support allowed effective management of the first 14 days of the Covid-19 outbreak, avoiding resource rationing.