Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Year range
2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-319128

ABSTRACT

Therapeutic options are urgently needed to fight the outbreak of a novel coronavirus (SARS-CoV-2), which causes the COVID-19 disease and is spreading rapidly around the world. Drug repurposing can significantly accelerate the identification of drug candidates suitable for clinical evaluation. Moreover, polypharmacological effects may increase antiviral activity and/or counteract severe complications concurrently affecting COVID-19 patients. Herein, we present the results of a computational drug repurposing campaign in search of potential inhibitors of the main protease of SARS-CoV-2. The screening allowed the selection of 22 promising drugs. Some of them have already entered clinical trials, but the vast majority of the identified compounds are new and have never been considered before. For each repurposed compound, its therapeutic relevance and potential beneficial polypharmacological effects that may arise due to its original therapeutic indication are thoroughly discussed.

3.
Front Pharmacol ; 12: 636989, 2021.
Article in English | MEDLINE | ID: covidwho-1127996

ABSTRACT

The outbreak of a new coronavirus (SARS-CoV-2), which is responsible for the COVID-19 disease and is spreading rapidly around the world, urgently requires effective therapeutic treatments. In this context, drug repurposing represents a valuable strategy, as it enables accelerating the identification of drug candidates with already known safety profiles, possibly aiding in the late stages of clinical evaluation. Moreover, therapeutic treatments based on drugs with beneficial multi-target activities (polypharmacology) may show an increased antiviral activity or help to counteract severe complications concurrently affecting COVID-19 patients. In this study, we present the results of a computational drug repurposing campaign that aimed at identifying potential inhibitors of the main protease (Mpro) of the SARS-CoV-2. The performed in silico screening allowed the identification of 22 candidates with putative SARS-CoV-2 Mpro inhibitory activity. Interestingly, some of the identified compounds have recently entered clinical trials for COVID-19 treatment, albeit not being assayed for their SARS-CoV-2 antiviral activity. Some candidates present a polypharmacology profile that may be beneficial for COVID-19 treatment and, to the best of our knowledge, have never been considered in clinical trials. For each repurposed compound, its therapeutic relevance and potential beneficial polypharmacological effects that may arise due to its original therapeutic indication are thoroughly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL