Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-330954

ABSTRACT

Background: Acute myocardial injury is associated with poor prognosis in respiratory tract infections. We aimed to highlight the differences in prevalence of myocardial injury and its impact on prognosis in patients with COVID-19 compared to those with seasonal influenza. Methods: : This was a single-center prospective cohort study with a historical control group. 300 age-/sex-matched SARS-CoV-2 and seasonal influenza positive patients were enrolled. Myocardial injury was assessed by electrocardiogram (ECG), transthoracic echocardiography and biomarkers including high-sensitivity troponin-I. All patients were followed-up for 30 days after enrollment for all-cause mortalitiy, admission to the intensive care unit (ICU) and mechanical ventilation. Results: : Right ventricular distress was more common in COVID-19 whereas pathological ECG findings and impaired left ventricular function were more prevalent among influenza patients. COVID-19 patients suffered from a higher percentage of hypertension and dyslipidaemia. Contrary to COVID-19, pericardial effusion at admission was associated with poor outcome in the influenza group. Severe course of disease and respiratory failure resulted in significantly higher rates of ICU treatment and mechanical ventilation in COVID-19 patients. Although distribution of myocardial injury was similar, significantly fewer cardiac catheterizations were performed in COVID-19 patients. However, number of cardiac catheterizations was low in both groups. Finally, 30-day mortality was significantly higher in COVID-19 compared to influenza patients. Conclusions: : In adults requiring hospitalization due to COVID-19 or seasonal influenza, cardiovascular risk factors and signs of myocardial distress differ significantly. Furthermore, cardiovascular comorbidities may impair prognosis in COVID-19 patients to a higher degree than in their influenza counterparts.

2.
Hamostaseologie ; 2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1559127

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is associated with high risk of venous and arterial thrombosis. Thrombotic complications, especially pulmonary embolism, lead to increased all-cause mortality in both intensive care unit and noncritically ill patients. Damage and activation of vascular endothelium, platelet activation, followed by thrombotic and fibrinolytic imbalance as well as hypercoagulability are the key pathomechanisms in immunothrombosis leading to a significant increase in thromboembolism in coronavirus disease 2019 (COVID-19) compared with other acute illnesses. In this review article, we discuss the incidence and prognosis, diagnosis, prevention, and treatment of venous thromboembolism in patients with COVID-19 disease, based on clinical experience and research available to date.

3.
Hamostaseologie ; 41(5): 379-385, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1483188

ABSTRACT

In 2019 first reports about a new human coronavirus emerged, which causes common cold symptoms as well as acute respiratory distress syndrome. The virus was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and severe thrombotic events including deep vein thrombosis, pulmonary embolism, and microthrombi emerged as additional symptoms. Heart failure, myocardial infarction, myocarditis, and stroke have also been observed. As main mediator of thrombus formation, platelets became one of the key aspects in SARS-CoV-2 research. Platelets may also directly interact with SARS-CoV-2 and have been shown to carry the SARS-CoV-2 virus. Platelets can also facilitate the virus uptake by secretion of the subtilisin-like proprotein convertase furin. Cleavage of the SARS-CoV-2 spike protein by furin enhances binding capabilities and virus entry into various cell types. In COVID-19 patients, platelet count differs between mild and serious infections. Patients with mild symptoms have a slightly increased platelet count, whereas thrombocytopenia is a hallmark of severe COVID-19 infections. Low platelet count can be attributed to platelet apoptosis and the incorporation of platelets into microthrombi (peripheral consumption) and severe thrombotic events. The observed excessive formation of thrombi is due to hyperactivation of platelets caused by the infection. Various factors have been suggested in the activation of platelets in COVID-19, such as hypoxia, vessel damage, inflammatory factors, NETosis, SARS-CoV-2 interaction, autoimmune reactions, and autocrine activation. COVID-19 does alter chemokine and cytokine plasma concentrations. Platelet chemokine profiles are altered in COVID-19 and contribute to the described chemokine storms observed in severely ill COVID-19 patients.


Subject(s)
Blood Platelets/physiology , Blood Platelets/virology , COVID-19/blood , Blood Platelets/immunology , COVID-19/complications , COVID-19/immunology , Chemokines/blood , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/etiology , Host Microbial Interactions/immunology , Host Microbial Interactions/physiology , Humans , Models, Biological , Pandemics , Platelet Activation/immunology , Platelet Activation/physiology , SARS-CoV-2/pathogenicity , Thrombosis/blood , Thrombosis/etiology
4.
Cardiovasc Res ; 117(1): 224-239, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-1387842

ABSTRACT

AIMS: To elucidate the prognostic role of monocytes in the immune response of patients with coronary artery disease (CAD) at risk for life-threatening heart and lung injury as major complications of SARS-CoV-2 infection. METHODS AND RESULTS: From February to April 2020, we prospectively studied a cohort of 96 participants comprising 47 consecutive patients with CAD and acute SARS-CoV-2 infection (CAD + SARS-CoV-2), 19 CAD patients without infections, and 30 healthy controls. Clinical assessment included blood sampling, echocardiography, and electrocardiography within 12 h of admission. Respiratory failure was stratified by the Horovitz Index (HI) as moderately/severely impaired when HI ≤200 mmHg. The clinical endpoint (EP) was defined as HI ≤200 mmHg with subsequent mechanical ventilation within a follow-up of 30 days. The numbers of CD14dimCD16+ non-classical monocytes in peripheral blood were remarkably low in CAD + SARS-CoV-2 compared with CAD patients without infection and healthy controls (P < 0.0001). Moreover, these CD14dimCD16 monocytes showed decreased expression of established markers of adhesion, migration, and T-cell activation (CD54, CD62L, CX3CR1, CD80, and HLA-DR). Decreased numbers of CD14dimCD16+ monocytes were associated with the occurrence of EP. Kaplan-Meier curves illustrate that CAD + SARS-CoV-2 patients with numbers below the median of CD14dimCD16+ monocytes (median 1443 cells/mL) reached EP significantly more often compared to patients with numbers above the median (log-rank 5.03, P = 0.025). CONCLUSION: Decreased numbers of CD14dimCD16+ monocytes are associated with rapidly progressive respiratory failure in CAD + SARS-CoV-2 patients. Intensified risk assessments comprising monocyte sub- and phenotypes may help to identify patients at risk for respiratory failure.


Subject(s)
COVID-19/complications , Coronary Artery Disease/complications , Lipopolysaccharide Receptors/analysis , Monocytes/physiology , Receptors, IgG/analysis , SARS-CoV-2 , Aged , Aged, 80 and over , COVID-19/immunology , Coronary Artery Disease/immunology , Female , GPI-Linked Proteins/analysis , Humans , Immunohistochemistry , Male , Middle Aged , Monocytes/immunology , Phenotype , Retrospective Studies
5.
Hamostaseologie ; 41(5): 350-355, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1351995

ABSTRACT

COVID-19 bezeichnet eine der schlimmsten Krisen unserer Generation und stellt (nicht nur) für das Gesundheitssystem eine schwer bewältigbare Herausforderung dar. Mortalität und Morbidität sind im Vergleich zu anderen saisonalen Erkrankungen wie der Influenza deutlich erhöht. COVID-19 bedroht allerdings nicht die gesamte Bevölkerung in gleichem Maße. Hochrisikopatienten sind älter und leiden an kardiovaskulären Erkrankungen wie Bluthochdruck, Diabetes mellitus oder einer koronaren Herzerkrankung. Um das Risiko für einen schweren Erkrankungsverlaufs zu quantifizieren bedarf es einer multimodalen Herangehensweise. Verschiedene Risikostratifizierungssysteme stehen zu Verfügung um ungünstige Verläufe wie Intensivbehandlung oder Gesamtmortalität vorauszusagen. Biomarker wie Troponin-I, D-Dimere und NT pro-BNP kombiniert mit echokardiographischen Parametern wie links- und rechtsventrikulärer Pumpfunktion sowie pulmonalarteriellem Druck können hilfreich sein um Hochrisikopatienten zu identifizieren, die ein intensiviertes Monitoring und eine stringentere Behandlung benötigen. Da kardiovaskuläre Risikofaktoren und Komorbiditäten von großer Bedeutung zur Abschätzung des Verlaufs einer SARS-CoV-2 Infektion sind, könnten alle hospitalisierten COVID-19 Patienten von einer routinemäßigen kardiologischen Betreuung durch ein COVID-19-Heart-Team profitieren. Ein frühzeitiges Erkennen von (kardiovaskulären) Hochrisikopatienten könnte das Management erleichtern sowie die Prognose einer schweren SARS-CoV-2 Infektion verbessern.


Subject(s)
COVID-19/epidemiology , Cardiovascular Diseases/epidemiology , SARS-CoV-2 , Biomarkers/analysis , COVID-19/therapy , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/physiopathology , Comorbidity , Echocardiography , Heart Disease Risk Factors , Humans , Models, Cardiovascular , Pandemics , Prognosis , Risk Assessment , SARS-CoV-2/pathogenicity , Severity of Illness Index
6.
Heart Lung ; 50(6): 914-918, 2021.
Article in English | MEDLINE | ID: covidwho-1336454

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is considered the main cause of COVID-19 associated morbidity and mortality. Early and reliable risk stratification is of crucial clinical importance in order to identify persons at risk for developing a severe course of disease. Deceleration capacity (DC) of heart rate as a marker of cardiac autonomic function predicts outcome in persons with myocardial infarction and heart failure. We hypothesized that reduced modulation of heart rate may be helpful in identifying persons with COVID-19 at risk for developing ARDS. METHODS: We prospectively enrolled 60 consecutive COVID-19 positive persons presenting at the University Hospital of Tuebingen. Arterial blood gas analysis and 24 h-Holter ECG recordings were performed and analyzed at admission. The primary end point was defined as development of ARDS with regards to the Berlin classification. RESULTS: 61.7% (37 of 60 persons) developed an ARDS. In persons with ARDS DC was significantly reduced when compared to persons with milder course of infection (3.2 ms vs. 6.6 ms, p < 0.001). DC achieved a good discrimination performance (AUC = 0.76) for ARDS in COVID-19 persons. In a multivariate analysis, decreased DC was associated with the development of ARDS. CONCLUSION: Our data suggest a promising role of DC to risk stratification in COVID-19.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Deceleration , Electrocardiography, Ambulatory , Humans , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/etiology , SARS-CoV-2
7.
Front Cardiovasc Med ; 8: 584108, 2021.
Article in English | MEDLINE | ID: covidwho-1278385

ABSTRACT

COVID-19 may lead to severe acute respiratory distress syndrome (ARDS) resulting in increased morbidity and mortality. Heart failure and/or pre-existing cardiovascular disease may correlate with poor outcomes and thus require special attention from treating physicians. The present study sought to investigate a possible impact of impaired myocardial function as well as myocardial distress markers on mortality or ARDS with need for mechanical ventilation in 157 consecutive patients with confirmed SARS-CoV-2 infection. All patients were admitted and treated at the University Hospital of Tübingen, Germany, during the first wave of the pandemic. Electrocardiography, echocardiography, and routine blood sampling were performed at hospital admission. Impaired left-ventricular and right-ventricular function, tricuspid regurgitation > grade 1, and elevated RV-pressure as well as thrombotic and myocardial distress markers (D-dimers, NT-pro-BNP, and troponin-I) were associated with mechanical ventilation and/or all-cause mortality. Impaired cardiac function is more frequent amidst ARDS, leading to subsequent need for mechanical ventilation, and thus denotes a poor outcome in COVID-19. Since a causal treatment for SARS-CoV-2 infection is still lacking, guideline-compliant cardiovascular evaluation and treatment remains the best approach to improve outcomes in COVID-19 patients with cardiovascular comorbidities.

9.
Blood ; 137(8): 1061-1071, 2021 02 25.
Article in English | MEDLINE | ID: covidwho-1013145

ABSTRACT

The pathophysiology of COVID-19-associated thrombosis seems to be multifactorial. We hypothesized that COVID-19 is accompanied by procoagulant platelets with subsequent alteration of the coagulation system. We investigated depolarization of mitochondrial inner transmembrane potential (ΔΨm), cytosolic calcium (Ca2+) concentration, and phosphatidylserine (PS) externalization. Platelets from COVID-19 patients in the intensive care unit (ICU; n = 21) showed higher ΔΨm depolarization, cytosolic Ca2+, and PS externalization compared with healthy controls (n = 18) and non-ICU COVID-19 patients (n = 4). Moreover, significant higher cytosolic Ca2+ and PS were observed compared with a septic ICU control group (ICU control; n = 5). In the ICU control group, cytosolic Ca2+ and PS externalization were comparable with healthy controls, with an increase in ΔΨm depolarization. Sera from COVID-19 patients in the ICU induced a significant increase in apoptosis markers (ΔΨm depolarization, cytosolic Ca2+, and PS externalization) compared with healthy volunteers and septic ICU controls. Interestingly, immunoglobulin G fractions from COVID-19 patients induced an Fcγ receptor IIA-dependent platelet apoptosis (ΔΨm depolarization, cytosolic Ca2+, and PS externalization). Enhanced PS externalization in platelets from COVID-19 patients in the ICU was associated with increased sequential organ failure assessment score (r = 0.5635) and D-dimer (r = 0.4473). Most importantly, patients with thrombosis had significantly higher PS externalization compared with those without. The strong correlations between markers for apoptosic and procoagulant platelets and D-dimer levels, as well as the incidence of thrombosis, may indicate that antibody-mediated procoagulant platelets potentially contributes to sustained increased thromboembolic risk in ICU COVID-19 patients.


Subject(s)
Apoptosis , Blood Platelets/pathology , COVID-19/pathology , Immunoglobulin G/metabolism , Adult , Aged , Blood Coagulation , Blood Platelets/metabolism , COVID-19/blood , COVID-19/complications , COVID-19/metabolism , Calcium/metabolism , Cohort Studies , Female , Humans , Male , Membrane Potential, Mitochondrial , Middle Aged , Phosphatidylserines/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Thrombosis/blood , Thrombosis/etiology , Thrombosis/metabolism , Thrombosis/pathology
10.
Clin Res Cardiol ; 109(12): 1491-1499, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-597440

ABSTRACT

BACKGROUND: COVID-19 infection may cause severe respiratory distress and is associated with increased morbidity and mortality. Impaired cardiac function and/or pre-existing cardiovascular disease may be associated with poor prognosis. In the present study, we report a comprehensive cardiovascular characterization in the first consecutive collective of patients that was admitted and treated at the University Hospital of Tübingen, Germany. METHODS: 123 consecutive patients with COVID-19 were included. Routine blood sampling, transthoracic echocardiography and electrocardiography were performed at hospital admission. RESULTS: We found that impaired left-ventricular and right-ventricular function as well as tricuspid regurgitation > grade 1 were significantly associated with higher mortality. Furthermore, elevated levels of myocardial distress markers (troponin-I and NT pro-BNP) were associated with poor prognosis in this patient collective. CONCLUSION: Impaired cardiac function is associated with poor prognosis in COVID-19 positive patients. Consequently, treatment of these patients should include careful guideline-conform cardiovascular evaluation and treatment. Thus, formation of a competent Cardio-COVID-19 team may represent a major clinical measure to optimize therapy of cardiovascular patients during this pandemic.


Subject(s)
COVID-19/mortality , Tricuspid Valve Insufficiency/mortality , Ventricular Dysfunction, Left/mortality , Ventricular Dysfunction, Right/mortality , Ventricular Function, Left , Ventricular Function, Right , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/physiopathology , COVID-19/therapy , Female , Germany , Hospital Mortality , Hospitalization , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Risk Assessment , Risk Factors , Time Factors , Tricuspid Valve Insufficiency/diagnosis , Tricuspid Valve Insufficiency/physiopathology , Tricuspid Valve Insufficiency/therapy , Ventricular Dysfunction, Left/diagnosis , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/therapy , Ventricular Dysfunction, Right/diagnosis , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/therapy
SELECTION OF CITATIONS
SEARCH DETAIL