Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Aging Cell ; 21(3): e13545, 2022 03.
Article in English | MEDLINE | ID: covidwho-1741316


Frailty affects the physical, cognitive, and social domains exposing older adults to an increased risk of cardiovascular disease and death. The mechanisms linking frailty and cardiovascular outcomes are mostly unknown. Here, we studied the association of abundance (flow cytometry) and gene expression profile (RNAseq) of stem/progenitor cells (HSPCs) and molecular markers of inflammaging (ELISA) with the cardiorespiratory phenotype and prospective adverse events of individuals classified according to levels of frailty. Two cohorts of older adults were enrolled in the study. In a cohort of pre-frail 35 individuals (average age: 75 years), a physical frailty score above the median identified subjects with initial alterations in cardiorespiratory function. RNA sequencing revealed S100A8/A9 upregulation in HSPCs from the bone marrow (>10-fold) and peripheral blood (>200-fold) of individuals with greater physical frailty. Moreover higher frailty was associated with increased alarmins S100A8/A9 and inflammatory cytokines in peripheral blood. We then studied a cohort of 104 more frail individuals (average age: 81 years) with multidomain health deficits. Reduced levels of circulating HSPCs and increased S100A8/A9 concentrations were independently associated with the frailty index. Remarkably, low HSPCs and high S100A8/A9 simultaneously predicted major adverse cardiovascular events at 1-year follow-up after adjustment for age and frailty index. In conclusion, inflammaging characterized by alarmin and pro-inflammatory cytokines in pre-frail individuals is mirrored by the pauperization of HSPCs in frail older people with comorbidities. S100A8/A9 is upregulated within HSPCs, identifying a phenotype that associates with poor cardiovascular outcomes.

Alarmins , Frailty , Aged , Calgranulin A/genetics , Calgranulin A/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Cytokines/metabolism , Frailty/genetics , Hematopoietic Stem Cells/metabolism , Humans , Prospective Studies
Sci Rep ; 11(1): 4310, 2021 02 22.
Article in English | MEDLINE | ID: covidwho-1096332


Patients requiring diagnostic testing for coronavirus disease 2019 (COVID-19) are routinely assessed by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) amplification of Sars-CoV-2 virus RNA extracted from oro/nasopharyngeal swabs. Despite the good specificity of the assays certified for SARS-CoV-2 molecular detection, and a theoretical sensitivity of few viral gene copies per reaction, a relatively high rate of false negatives continues to be reported. This is an important challenge in the management of patients on hospital admission and for correct monitoring of the infectivity after the acute phase. In the present report, we show that the use of digital PCR, a high sensitivity method to detect low amplicon numbers, allowed us to correctly detecting infection in swab material in a significant number of false negatives. We show that the implementation of digital PCR methods in the diagnostic assessment of COVID-19 could resolve, at least in part, this timely issue.

COVID-19/diagnosis , False Negative Reactions , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/pathogenicity , Adult , Aged , COVID-19/diagnostic imaging , COVID-19/genetics , Diagnostic Tests, Routine/methods , Female , Humans , Male , Middle Aged , SARS-CoV-2/genetics , Sensitivity and Specificity , Tomography, X-Ray Computed