Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
ACM Web Conference 2023 - Companion of the World Wide Web Conference, WWW 2023 ; : 1059-1068, 2023.
Article in English | Scopus | ID: covidwho-20242328

ABSTRACT

The information ecosystem today is noisy, and rife with messages that contain a mix of objective claims and subjective remarks or reactions. Any automated system that intends to capture the social, cultural, or political zeitgeist, must be able to analyze the claims as well as the remarks. Due to the deluge of such messages on social media, and their tremendous power to shape our perceptions, there has never been a greater need to automate these analyses, which play a pivotal role in fact-checking, opinion mining, understanding opinion trends, and other such downstream tasks of social consequence. In this noisy ecosystem, not all claims are worth checking for veracity. Such a check-worthy claim, moreover, must be accurately distilled from subjective remarks surrounding it. Finally, and especially for understanding opinion trends, it is important to understand the stance of the remarks or reactions towards that specific claim. To this end, we introduce a COVID-19 Twitter dataset, and present a three-stage process to (i) determine whether a given Tweet is indeed check-worthy, and if so, (ii) which portion of the Tweet ought to be checked for veracity, and finally, (iii) determine the author's stance towards the claim in that Tweet, thus introducing the novel task of topic-agnostic stance detection. © 2023 ACM.

2.
Acm Journal of Data and Information Quality ; 15(1), 2023.
Article in English | Web of Science | ID: covidwho-2311887

ABSTRACT

With the spread of the SARS-CoV-2, enormous amounts of information about the pandemic are disseminated through social media platforms such as Twitter. Social media posts often leverage the trust readers have in prestigious news agencies and cite news articles as a way of gaining credibility. Nevertheless, it is not always the case that the cited article supports the claim made in the social media post. We present a cross-genre ad hoc pipeline to identify whether the information in a Twitter post (i.e., a "Tweet") is indeed supported by the cited news article. Our approach is empirically based on a corpus of over 46.86 million Tweets and is divided into two tasks: (i) development of models to detect Tweets containing claim and worth to be fact-checked and (ii) verifying whether the claims made in a Tweet are supported by the newswire article it cites. Unlike previous studies that detect unsubstantiated information by post hoc analysis of the patterns of propagation, we seek to identify reliable support (or the lack of it) before the misinformation begins to spread. We discover that nearly half of the Tweets (43.4%) are not factual and hence not worth checking-a significant filter, given the sheer volume of social media posts on a platform such as Twitter. Moreover, we find that among the Tweets that contain a seemingly factual claim while citing a news article as supporting evidence, at least 1% are not actually supported by the cited news and are hence misleading.

3.
4th IEEE International Conference on Cognitive Machine Intelligence, CogMI 2022 ; : 91-100, 2022.
Article in English | Scopus | ID: covidwho-2271371

ABSTRACT

Accurate energy consumption prediction is critical for proper resource allocation, meeting energy demand, and energy supply security. This work aims at developing a methodology for accurately modeling and predicting electricity consumption during abnormal long-lasting events, such as COVID-19 pandemic, which considerably affect consumption patterns in different types of premises. The proposed methodology involves three steps: (A) selects among multiple models the most accurate one in energy consumption prediction under normal conditions, (B) uses the selected model to analyze the impact of a specific abnormal event on energy consumption for various classes of premises, and (C) investigates which features contribute most to energy consumption prediction for abnormal conditions and which features can be added to improve such predictions.We use COVID-19 as a case study with datasets obtained from Fort Collins Utilities, which contain energy consumption data for residential and different sizes of commercial and industrial premises in the city of Fort Collins, Colorado, USA. We also use temperature records from NOAA and COVID-19 public orders from Larimer County.We validate the methodology by demonstrating that the methodology can help design a model suited for the pandemic situation using representative features, and as a result, accurately predict the energy consumption. Our results show that the MLP model selected by our methodology performs better than the other models even when they all use the COVID-related features. We also demonstrate that the methodology can help measure the impacts of the pandemic on the energy consumption. © 2022 IEEE.

4.
Journal of Data and Information Quality ; 15(1), 2022.
Article in English | Scopus | ID: covidwho-2289236

ABSTRACT

With the spread of the SARS-CoV-2, enormous amounts of information about the pandemic are disseminated through social media platforms such as Twitter. Social media posts often leverage the trust readers have in prestigious news agencies and cite news articles as a way of gaining credibility. Nevertheless, it is not always the case that the cited article supports the claim made in the social media post. We present a cross-genre ad hoc pipeline to identify whether the information in a Twitter post (i.e., a "Tweet") is indeed supported by the cited news article. Our approach is empirically based on a corpus of over 46.86 million Tweets and is divided into two tasks: (i) development of models to detect Tweets containing claim and worth to be fact-checked and (ii) verifying whether the claims made in a Tweet are supported by the newswire article it cites. Unlike previous studies that detect unsubstantiated information by post hoc analysis of the patterns of propagation, we seek to identify reliable support (or the lack of it) before the misinformation begins to spread. We discover that nearly half of the Tweets (43.4%) are not factual and hence not worth checking - a significant filter, given the sheer volume of social media posts on a platform such as Twitter. Moreover, we find that among the Tweets that contain a seemingly factual claim while citing a news article as supporting evidence, at least 1% are not actually supported by the cited news and are hence misleading. © 2022 Association for Computing Machinery.

5.
Sensors (Basel) ; 23(1)2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2239650

ABSTRACT

In the past decade, the scale of e-commerce has continued to grow. With the outbreak of the COVID-19 epidemic, brick-and-mortar businesses have been actively developing online channels where precision marketing has become the focus. This study proposed using the electrocardiography (ECG) recorded by wearable devices (e.g., smartwatches) to judge purchase intentions through deep learning. The method of this study included a long short-term memory (LSTM) model supplemented by collective decisions. The experiment was divided into two stages. The first stage aimed to find the regularity of the ECG and verify the research by repeated measurement of a small number of subjects. A total of 201 ECGs were collected for deep learning, and the results showed that the accuracy rate of predicting purchase intention was 75.5%. Then, incremental learning was adopted to carry out the second stage of the experiment. In addition to adding subjects, it also filtered five different frequency ranges. This study employed the data augmentation method and used 480 ECGs for training, and the final accuracy rate reached 82.1%. This study could encourage online marketers to cooperate with health management companies with cross-domain big data analysis to further improve the accuracy of precision marketing.


Subject(s)
COVID-19 , Deep Learning , Wearable Electronic Devices , Humans , Intention , COVID-19/diagnosis , Commerce
6.
Journal of the Indian Medical Association ; 119(6):38-40, 2021.
Article in English | EMBASE | ID: covidwho-1357825

ABSTRACT

This descriptive, observational, cross-sectional study was performed to detect the deviations in common biochemical parameters in COVID patients. All the COVID patients whether symptomatic or not (admitted within 15th of September to 30th November) were enrolled in the study. A statistically significant rise in the serum transaminases, urea, creatinine, the serum electrolytes and a decrease in serum albumin from their respective reference intervals in the population was noted. These deviations indicate that, apart from the lung parenchyma, SARS COV-2 infection affects the liver and the kidney as well. These multisystem alterations in biochemical parameters are evident even if the patients are clinically asymptomatic.

SELECTION OF CITATIONS
SEARCH DETAIL