Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Mol Biol Rep ; 49(3): 2321-2324, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1664478


Numerous studies demonstrate parallels between CVD, type 2 diabetes mellitus (T2DM) and COVID-19 pathology, which accentuate pre-existing complications in patients infected with COVID-19 and potentially exacerbate the infection course. Antidiabetic drugs such as sodium-glucose transporter-2 (SGLT-2) inhibitors have garnered substantial attention recently due to their efficacy in reducing the severity of cardiorenal disease. The effect of SGLT-2 inhibitors in patients with COVID-19 remains unclear particularly since SGLT-2 inhibitors contribute to altering the RAAS cascade activity, which includes ACE-2, the major cell entry receptor for SARS-CoV2. A study, DARE-19, was carried out to unveil the effects of SGLT-2 inhibitor treatment on comorbid disease complications and concomitant COVID-19 outcomes and demonstrated no statistical significance. However, the need for further studies is essential to provide conclusive clinical findings.

Benzhydryl Compounds/therapeutic use , COVID-19/complications , Glucosides/therapeutic use , Renin-Angiotensin System/drug effects , Respiratory Insufficiency/drug therapy , SARS-CoV-2 , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Angiotensin-Converting Enzyme 2/physiology , Clinical Trials, Phase III as Topic , Double-Blind Method , Drug Repositioning , Heart Diseases/prevention & control , Humans , Kidney Diseases/prevention & control , Mitochondria/drug effects , Multicenter Studies as Topic , Oxidative Stress/drug effects , Randomized Controlled Trials as Topic , Receptors, Virus/physiology , Respiratory Insufficiency/etiology , Sodium-Glucose Transporter 2/physiology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
Biomed Pharmacother ; 145: 112385, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1565522


Chemically modified mRNA represents a unique, efficient, and straightforward approach to produce a class of biopharmaceutical agents. It has been already approved as a vaccination-based method for targeting SARS-CoV-2 virus. The COVID-19 pandemic has highlighted the prospect of synthetic modified mRNA to efficiently and safely combat various diseases. Recently, various optimization advances have been adopted to overcome the limitations associated with conventional gene therapeutics leading to wide-ranging applications in different disease conditions. This review sheds light on emerging directions of chemically modified mRNAs to prevent and treat widespread chronic diseases, including metabolic disorders, cancer vaccination and immunotherapy, musculoskeletal disorders, respiratory conditions, cardiovascular diseases, and liver diseases.

COVID-19/prevention & control , Chronic Disease/prevention & control , Chronic Disease/therapy , Genetic Therapy/methods , Immunotherapy/methods , Pandemics/prevention & control , RNA, Messenger/chemistry , SARS-CoV-2/immunology , Vaccines, Synthetic , Biological Availability , Drug Carriers , Forecasting , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/therapeutic use , Humans , Immunotherapy, Active , RNA Stability , RNA, Messenger/administration & dosage , RNA, Messenger/immunology , RNA, Messenger/therapeutic use , SARS-CoV-2/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , /immunology