Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Clin Infect Dis ; 74(3): 525-528, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1684540

ABSTRACT

Replication-competent virus has not been detected in individuals with mild to moderate coronavirus disease 2019 (COVID-19) more than 10 days after symptom onset. It is unknown whether these findings apply to nursing home residents. Of 273 specimens collected from nursing home residents >10 days from the initial positive test, none were culture positive.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nursing Homes , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription
2.
MMWR Morb Mortal Wkly Rep ; 70(45): 1579-1583, 2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-1513271

ABSTRACT

The Pfizer-BioNTech COVID-19 (BNT162b2) vaccine is a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine encoding the prefusion spike glycoprotein of SARS-CoV-2, the virus that causes COVID-19. On August 23, 2021, the Food and Drug Administration (FDA) approved a Biologics License Application (BLA) for use of the Pfizer-BioNTech COVID-19 vaccine, marketed as Comirnaty (Pfizer, Inc.), in persons aged ≥16 years (1). The Pfizer-BioNTech COVID-19 vaccine is also recommended for adolescents aged 12-15 years under an Emergency Use Authorization (EUA) (1). All persons aged ≥12 years are recommended to receive 2 doses (30 µg, 0.3 mL each), administered 3 weeks apart (2,3). As of November 2, 2021, approximately 248 million doses of the Pfizer-BioNTech COVID-19 vaccine had been administered to persons aged ≥12 years in the United States.* On October 29, 2021, FDA issued an EUA amendment for a new formulation of Pfizer-BioNTech COVID-19 vaccine for use in children aged 5-11 years, administered as 2 doses (10 µg, 0.2 mL each), 3 weeks apart (Table) (1). On November 2, 2021, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation† for use of the Pfizer-BioNTech COVID-19 vaccine in children aged 5-11 years for the prevention of COVID-19. To guide its deliberations regarding recommendations for the vaccine, ACIP used the Evidence to Recommendation (EtR) Framework§ and incorporated a Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach.¶ The ACIP recommendation for the use of the Pfizer-BioNTech COVID-19 vaccine in children aged 5-11 years under an EUA is interim and will be updated as additional information becomes available. The Pfizer-BioNTech COVID-19 vaccine has high efficacy (>90%) against COVID-19 in children aged 5-11 years, and ACIP determined benefits outweigh risks for vaccination. Vaccination is important to protect children against COVID-19 and reduce community transmission of SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/administration & dosage , Practice Guidelines as Topic , Advisory Committees , COVID-19/epidemiology , COVID-19/prevention & control , Centers for Disease Control and Prevention, U.S. , Child , Drug Approval , Humans , Immunization/standards , Immunization Schedule , United States/epidemiology , United States Food and Drug Administration
3.
MMWR Morb Mortal Wkly Rep ; 69(32): 1089-1094, 2020 Aug 14.
Article in English | MEDLINE | ID: covidwho-1389851

ABSTRACT

SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), can spread rapidly in nursing homes once it is introduced (1,2). To prevent outbreaks, more data are needed to identify sources of introduction and means of transmission within nursing homes. Nursing home residents who receive hemodialysis (dialysis) might be at higher risk for SARS-CoV-2 infections because of their frequent exposures outside the nursing home to both community dialysis patients and staff members at dialysis centers (3). Investigation of a COVID-19 outbreak in a Maryland nursing home (facility A) identified a higher prevalence of infection among residents undergoing dialysis (47%; 15 of 32) than among those not receiving dialysis (16%; 22 of 138) (p<0.001). Among residents with COVID-19, the 30-day hospitalization rate among those receiving dialysis (53%) was higher than that among residents not receiving dialysis (18%) (p = 0.03); the proportion of dialysis patients who died was 40% compared with those who did not receive dialysis (27%) (p = 0.42).Careful consideration of infection control practices throughout the dialysis process (e.g., transportation, time spent in waiting areas, spacing of machines, and cohorting), clear communication between nursing homes and dialysis centers, and coordination of testing practices between these sites are critical to preventing COVID-19 outbreaks in this medically vulnerable population.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Dialysis/adverse effects , Disease Outbreaks , Nursing Homes , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Aged , COVID-19 , Humans , Maryland/epidemiology , Pandemics
5.
Clin Infect Dis ; 73(3): e792-e798, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338690

ABSTRACT

BACKGROUND: Identifying asymptomatic individuals early through serial testing is recommended to control coronavirus disease 2019 (COVID-19) in nursing homes, both in response to an outbreak ("outbreak testing" of residents and healthcare personnel) and in facilities without outbreaks ("nonoutbreak testing" of healthcare personnel). The effectiveness of outbreak testing and isolation with or without nonoutbreak testing was evaluated. METHODS: Using published SARS-CoV-2 transmission parameters, the fraction of SARS-CoV-2 transmissions prevented through serial testing (weekly, every 3 days, or daily) and isolation of asymptomatic persons compared with symptom-based testing and isolation was evaluated through mathematical modeling using a Reed-Frost model to estimate the percentage of cases prevented (ie, "effectiveness") through either outbreak testing alone or outbreak plus nonoutbreak testing. The potential effect of simultaneous decreases (by 10%) in the effectiveness of isolating infected individuals when instituting testing strategies was also evaluated. RESULTS: Modeling suggests that outbreak testing could prevent 54% (weekly testing with 48-hour test turnaround) to 92% (daily testing with immediate results and 50% relative sensitivity) of SARS-CoV-2 infections. Adding nonoutbreak testing could prevent up to an additional 8% of SARS-CoV-2 infections (depending on test frequency and turnaround time). However, added benefits of nonoutbreak testing were mostly negated if accompanied by decreases in infection control practice. CONCLUSIONS: When combined with high-quality infection control practices, outbreak testing could be an effective approach to preventing COVID-19 in nursing homes, particularly if optimized through increased test frequency and use of tests with rapid turnaround.


Subject(s)
COVID-19 , Disease Outbreaks/prevention & control , Health Personnel , Humans , Nursing Homes , SARS-CoV-2 , United States/epidemiology
6.
Ann Intern Med ; 174(7): 945-951, 2021 07.
Article in English | MEDLINE | ID: covidwho-1318465

ABSTRACT

BACKGROUND: To address high COVID-19 burden in U.S. nursing homes, rapid SARS-CoV-2 antigen tests have been widely distributed in those facilities. However, performance data are lacking, especially in asymptomatic people. OBJECTIVE: To evaluate the performance of SARS-CoV-2 antigen testing when used for facility-wide testing during a nursing home outbreak. DESIGN: A prospective evaluation involving 3 facility-wide rounds of testing where paired respiratory specimens were collected to evaluate the performance of the BinaxNOW antigen test compared with virus culture and real-time reverse transcription polymerase chain reaction (RT-PCR). Early and late infection were defined using changes in RT-PCR cycle threshold values and prior test results. SETTING: A nursing home with an ongoing SARS-CoV-2 outbreak. PARTICIPANTS: 532 paired specimens collected from 234 available residents and staff. MEASUREMENTS: Percentage of positive agreement (PPA) and percentage of negative agreement (PNA) for BinaxNOW compared with RT-PCR and virus culture. RESULTS: BinaxNOW PPA with virus culture, used for detection of replication-competent virus, was 95%. However, the overall PPA of antigen testing with RT-PCR was 69%, and PNA was 98%. When only the first positive test result was analyzed for each participant, PPA of antigen testing with RT-PCR was 82% among 45 symptomatic people and 52% among 343 asymptomatic people. Compared with RT-PCR and virus culture, the BinaxNOW test performed well in early infection (86% and 95%, respectively) and poorly in late infection (51% and no recovered virus, respectively). LIMITATION: Accurate symptom ascertainment was challenging in nursing home residents; test performance may not be representative of testing done by nonlaboratory staff. CONCLUSION: Despite lower positive agreement compared with RT-PCR, antigen test positivity had higher agreement with shedding of replication-competent virus. These results suggest that antigen testing could be a useful tool to rapidly identify contagious people at risk for transmitting SARS-CoV-2 during nascent outbreaks and help reduce COVID-19 burden in nursing homes. PRIMARY FUNDING SOURCE: None.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Nursing Homes , Pandemics , SARS-CoV-2/immunology , COVID-19/epidemiology , False Negative Reactions , False Positive Reactions , Humans , Prospective Studies , Retrospective Studies , United States/epidemiology
7.
Clin Infect Dis ; 74(3): 525-528, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1228460

ABSTRACT

Replication-competent virus has not been detected in individuals with mild to moderate coronavirus disease 2019 (COVID-19) more than 10 days after symptom onset. It is unknown whether these findings apply to nursing home residents. Of 273 specimens collected from nursing home residents >10 days from the initial positive test, none were culture positive.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nursing Homes , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription
8.
JAMA Netw Open ; 4(3): e211283, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1125121

ABSTRACT

Importance: Risks for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among health care personnel (HCP) are unclear. Objective: To evaluate the risk factors associated with SARS-CoV-2 seropositivity among HCP with the a priori hypothesis that community exposure but not health care exposure was associated with seropositivity. Design, Setting, and Participants: This cross-sectional study was conducted among volunteer HCP at 4 large health care systems in 3 US states. Sites shared deidentified data sets, including previously collected serology results, questionnaire results on community and workplace exposures at the time of serology, and 3-digit residential zip code prefix of HCP. Site-specific responses were mapped to a common metadata set. Residential weekly coronavirus disease 2019 (COVID-19) cumulative incidence was calculated from state-based COVID-19 case and census data. Exposures: Model variables included demographic (age, race, sex, ethnicity), community (known COVID-19 contact, COVID-19 cumulative incidence by 3-digit zip code prefix), and health care (workplace, job role, COVID-19 patient contact) factors. Main Outcome and Measures: The main outcome was SARS-CoV-2 seropositivity. Risk factors for seropositivity were estimated using a mixed-effects logistic regression model with a random intercept to account for clustering by site. Results: Among 24 749 HCP, most were younger than 50 years (17 233 [69.6%]), were women (19 361 [78.2%]), were White individuals (15 157 [61.2%]), and reported workplace contact with patients with COVID-19 (12 413 [50.2%]). Many HCP worked in the inpatient setting (8893 [35.9%]) and were nurses (7830 [31.6%]). Cumulative incidence of COVID-19 per 10 000 in the community up to 1 week prior to serology testing ranged from 8.2 to 275.6; 20 072 HCP (81.1%) reported no COVID-19 contact in the community. Seropositivity was 4.4% (95% CI, 4.1%-4.6%; 1080 HCP) overall. In multivariable analysis, community COVID-19 contact and community COVID-19 cumulative incidence were associated with seropositivity (community contact: adjusted odds ratio [aOR], 3.5; 95% CI, 2.9-4.1; community cumulative incidence: aOR, 1.8; 95% CI, 1.3-2.6). No assessed workplace factors were associated with seropositivity, including nurse job role (aOR, 1.1; 95% CI, 0.9-1.3), working in the emergency department (aOR, 1.0; 95% CI, 0.8-1.3), or workplace contact with patients with COVID-19 (aOR, 1.1; 95% CI, 0.9-1.3). Conclusions and Relevance: In this cross-sectional study of US HCP in 3 states, community exposures were associated with seropositivity to SARS-CoV-2, but workplace factors, including workplace role, environment, or contact with patients with known COVID-19, were not. These findings provide reassurance that current infection prevention practices in diverse health care settings are effective in preventing transmission of SARS-CoV-2 from patients to HCP.


Subject(s)
COVID-19/epidemiology , Disease Hotspot , Disease Transmission, Infectious/statistics & numerical data , Health Personnel/statistics & numerical data , Occupational Exposure/statistics & numerical data , Adult , COVID-19/transmission , COVID-19 Serological Testing , Cross-Sectional Studies , Female , Georgia/epidemiology , Humans , Illinois/epidemiology , Male , Maryland/epidemiology , Middle Aged , Residence Characteristics , Risk Factors , SARS-CoV-2 , Seroepidemiologic Studies , United States/epidemiology
9.
J Am Med Dir Assoc ; 22(3): 498-503, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1099168

ABSTRACT

BACKGROUND: Effective halting of outbreaks in skilled nursing facilities (SNFs) depends on the earliest recognition of cases. We assessed confirmed COVID-19 cases at an SNF impacted by COVID-19 in the United States to identify early indications of COVID-19 infection. METHODS: We performed retrospective reviews of electronic health records for residents with laboratory-confirmed SARS-CoV-2 during February 28-March 16, 2020. Records were abstracted for comorbidities, signs and symptoms, and illness outcomes during the 2 weeks before and after the date of positive specimen collection. Relative risks (RRs) of hospitalization and death were calculated. RESULTS: Of the 118 residents tested among approximately 130 residents from Facility A during February 28-March 16, 2020, 101 (86%) were found to test positive for SARS-CoV-2. At initial presentation, about two-thirds of SARS-CoV-2-positive residents had an abnormal vital sign or change in oxygen status. Most (90.2%) symptomatic residents had elevated temperature, change in mental status, lethargy, change in oxygen status, or cough; 9 (11.0%) did not have fever, cough, or shortness of breath during their clinical course. Those with change in oxygen status had an increased relative risk (RR) of 30-day mortality [51.1% vs 29.7%, RR 1.7, 95% confidence interval (CI) 1.0-3.0]. RR of hospitalization was higher for residents with underlying hepatic disease (1.6, 95% CI 1.1-2.2) or obesity (1.5, 95% CI 1.1-2.1); RR of death was not statistically significant. CONCLUSIONS AND IMPLICATIONS: Our findings reinforce the critical role that monitoring of signs and symptoms can have in identifying COVID-19 cases early. SNFs should ensure they have a systematic approach for responding to abnormal vital signs and oxygen saturation and consider ensuring common signs and symptoms identified in Facility A are among those they monitor.


Subject(s)
COVID-19/diagnosis , Skilled Nursing Facilities , Aged , Aged, 80 and over , COVID-19/physiopathology , COVID-19 Testing/methods , Comorbidity , Female , Humans , Male , Medical Records , Middle Aged , Prognosis , Retrospective Studies , SARS-CoV-2/isolation & purification , United States
10.
Clin Infect Dis ; 73(3): e792-e798, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1075481

ABSTRACT

BACKGROUND: Identifying asymptomatic individuals early through serial testing is recommended to control coronavirus disease 2019 (COVID-19) in nursing homes, both in response to an outbreak ("outbreak testing" of residents and healthcare personnel) and in facilities without outbreaks ("nonoutbreak testing" of healthcare personnel). The effectiveness of outbreak testing and isolation with or without nonoutbreak testing was evaluated. METHODS: Using published SARS-CoV-2 transmission parameters, the fraction of SARS-CoV-2 transmissions prevented through serial testing (weekly, every 3 days, or daily) and isolation of asymptomatic persons compared with symptom-based testing and isolation was evaluated through mathematical modeling using a Reed-Frost model to estimate the percentage of cases prevented (ie, "effectiveness") through either outbreak testing alone or outbreak plus nonoutbreak testing. The potential effect of simultaneous decreases (by 10%) in the effectiveness of isolating infected individuals when instituting testing strategies was also evaluated. RESULTS: Modeling suggests that outbreak testing could prevent 54% (weekly testing with 48-hour test turnaround) to 92% (daily testing with immediate results and 50% relative sensitivity) of SARS-CoV-2 infections. Adding nonoutbreak testing could prevent up to an additional 8% of SARS-CoV-2 infections (depending on test frequency and turnaround time). However, added benefits of nonoutbreak testing were mostly negated if accompanied by decreases in infection control practice. CONCLUSIONS: When combined with high-quality infection control practices, outbreak testing could be an effective approach to preventing COVID-19 in nursing homes, particularly if optimized through increased test frequency and use of tests with rapid turnaround.


Subject(s)
COVID-19 , Disease Outbreaks/prevention & control , Health Personnel , Humans , Nursing Homes , SARS-CoV-2 , United States/epidemiology
11.
MMWR Morb Mortal Wkly Rep ; 69(38): 1364-1368, 2020 Sep 25.
Article in English | MEDLINE | ID: covidwho-792334

ABSTRACT

As of September 21, 2020, the coronavirus disease 2019 (COVID-19) pandemic had resulted in 6,786,352 cases and 199,024 deaths in the United States.* Health care personnel (HCP) are essential workers at risk for exposure to patients or infectious materials (1). The impact of COVID-19 on U.S. HCP was first described using national case surveillance data in April 2020 (2). Since then, the number of reported HCP with COVID-19 has increased tenfold. This update describes demographic characteristics, underlying medical conditions, hospitalizations, and intensive care unit (ICU) admissions, stratified by vital status, among 100,570 HCP with COVID-19 reported to CDC during February 12-July 16, 2020. HCP occupation type and job setting are newly reported. HCP status was available for 571,708 (22%) of 2,633,585 cases reported to CDC. Most HCP with COVID-19 were female (79%), aged 16-44 years (57%), not hospitalized (92%), and lacked all 10 underlying medical conditions specified on the case report form† (56%). Of HCP with COVID-19, 641 died. Compared with nonfatal COVID-19 HCP cases, a higher percentage of fatal cases occurred in males (38% versus 22%), persons aged ≥65 years (44% versus 4%), non-Hispanic Asians (Asians) (20% versus 9%), non-Hispanic Blacks (Blacks) (32% versus 25%), and persons with any of the 10 underlying medical conditions specified on the case report form (92% versus 41%). From a subset of jurisdictions reporting occupation type or job setting for HCP with COVID-19, nurses were the most frequently identified single occupation type (30%), and nursing and residential care facilities were the most common job setting (67%). Ensuring access to personal protective equipment (PPE) and training, and practices such as universal use of face masks at work, wearing masks in the community, and observing social distancing remain critical strategies to protect HCP and those they serve.


Subject(s)
Coronavirus Infections/epidemiology , Health Personnel/statistics & numerical data , Occupational Diseases/epidemiology , Pneumonia, Viral/epidemiology , Population Surveillance , Adolescent , Adult , Aged , COVID-19 , Coronavirus Infections/mortality , Female , Humans , Male , Middle Aged , Occupational Diseases/mortality , Pandemics , Pneumonia, Viral/mortality , Risk Factors , United States/epidemiology , Young Adult
12.
MMWR Morb Mortal Wkly Rep ; 69(37): 1288-1295, 2020 Sep 18.
Article in English | MEDLINE | ID: covidwho-789969

ABSTRACT

SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), can spread rapidly in high-risk congregate settings such as skilled nursing facilities (SNFs) (1). In Minnesota, SNF-associated cases accounted for 3,950 (8%) of 48,711 COVID-19 cases reported through July 21, 2020; 35% of SNF-associated cases involved health care personnel (HCP*), including six deaths. Facility-wide, serial testing in SNFs has been used to identify residents with asymptomatic and presymptomatic SARS-CoV-2 infection to inform mitigation efforts, including cohorting of residents with positive test results and exclusion of infected HCP from the workplace (2,3). During April-June 2020, the Minnesota Department of Health (MDH), with CDC assistance, conducted weekly serial testing at two SNFs experiencing COVID-19 outbreaks. Among 259 tested residents, and 341 tested HCP, 64% and 33%, respectively, had positive reverse transcription-polymerase chain reaction (RT-PCR) SARS-CoV-2 test results. Continued SARS-CoV-2 transmission was potentially facilitated by lapses in infection prevention and control (IPC) practices, up to 12-day delays in receiving HCP test results (53%) at one facility, and incomplete HCP participation (71%). Genetic sequencing demonstrated that SARS-CoV-2 viral genomes from HCP and resident specimens were clustered by facility, suggesting facility-based transmission. Residents and HCP working in SNFs are at risk for infection with SARS-CoV-2. As part of comprehensive COVID-19 preparation and response, including early identification of cases, SNFs should conduct serial testing of residents and HCP, maximize HCP testing participation, ensure availability of personal protective equipment (PPE), and enhance IPC practices† (4-5).


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Disease Outbreaks , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Skilled Nursing Facilities , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Female , Genome, Viral/genetics , Humans , Male , Middle Aged , Minnesota/epidemiology , Pandemics , Risk Assessment , SARS-CoV-2 , Whole Genome Sequencing , Young Adult
13.
MMWR Morb Mortal Wkly Rep ; 69(32): 1095-1099, 2020 Aug 11.
Article in English | MEDLINE | ID: covidwho-705516

ABSTRACT

Undetected infection with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) contributes to transmission in nursing homes, settings where large outbreaks with high resident mortality have occurred (1,2). Facility-wide testing of residents and health care personnel (HCP) can identify asymptomatic and presymptomatic infections and facilitate infection prevention and control interventions (3-5). Seven state or local health departments conducted initial facility-wide testing of residents and staff members in 288 nursing homes during March 24-June 14, 2020. Two of the seven health departments conducted testing in 195 nursing homes as part of facility-wide testing all nursing homes in their state, which were in low-incidence areas (i.e., the median preceding 14-day cumulative incidence in the surrounding county for each jurisdiction was 19 and 38 cases per 100,000 persons); 125 of the 195 nursing homes had not reported any COVID-19 cases before the testing. Ninety-five of 22,977 (0.4%) persons tested in 29 (23%) of these 125 facilities had positive SARS-CoV-2 test results. The other five health departments targeted facility-wide testing to 93 nursing homes, where 13,443 persons were tested, and 1,619 (12%) had positive SARS-CoV-2 test results. In regression analyses among 88 of these nursing homes with a documented case before facility-wide testing occurred, each additional day between identification of the first case and completion of facility-wide testing was associated with identification of 1.3 additional cases. Among 62 facilities that could differentiate results by resident and HCP status, an estimated 1.3 HCP cases were identified for every three resident cases. Performing facility-wide testing immediately after identification of a case commonly identifies additional unrecognized cases and, therefore, might maximize the benefits of infection prevention and control interventions. In contrast, facility-wide testing in low-incidence areas without a case has a lower proportion of test positivity; strategies are needed to further optimize testing in these settings.


Subject(s)
Clinical Laboratory Techniques , Coronavirus Infections/prevention & control , Nursing Homes , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Aged , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Health Personnel , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Infectious Disease Transmission, Professional-to-Patient/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , United States/epidemiology
14.
MMWR Morb Mortal Wkly Rep ; 69(27): 882-886, 2020 Jul 10.
Article in English | MEDLINE | ID: covidwho-631005

ABSTRACT

Skilled nursing facilities (SNFs) are focal points of the coronavirus disease 2019 (COVID-19) pandemic, and asymptomatic infections with SARS-CoV-2, the virus that causes COVID-19, among SNF residents and health care personnel have been described (1-3). Repeated point prevalence surveys (serial testing of all residents and health care personnel at a health care facility irrespective of symptoms) have been used to identify asymptomatic infections and have reduced SARS-CoV-2 transmission during SNF outbreaks (1,3). During March 2020, the Detroit Health Department and area hospitals detected a sharp increase in COVID-19 diagnoses, hospitalizations, and associated deaths among SNF residents. The Detroit Health Department collaborated with local government, academic, and health care system partners and a CDC field team to rapidly expand SARS-CoV-2 testing and implement infection prevention and control (IPC) activities in all Detroit-area SNFs. During March 7-May 8, among 2,773 residents of 26 Detroit SNFs, 1,207 laboratory-confirmed cases of COVID-19 were identified during three periods: before (March 7-April 7) and after two point prevalence surveys (April 8-25 and April 30-May 8): the overall attack rate was 44%. Within 21 days of receiving their first positive test results, 446 (37%) of 1,207 COVID-19 patients were hospitalized, and 287 (24%) died. Among facilities participating in both surveys (n = 12), the percentage of positive test results declined from 35% to 18%. Repeated point prevalence surveys in SNFs identified asymptomatic COVID-19 cases, informed cohorting and IPC practices aimed at reducing transmission, and guided prioritization of health department resources for facilities experiencing high levels of SARS-CoV-2 transmission. With the increased availability of SARS-CoV-2 testing, repeated point prevalence surveys and enhanced and expanded IPC support should be standard tools for interrupting and preventing COVID-19 outbreaks in SNFs.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/prevention & control , Infection Control/methods , Mass Screening/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Skilled Nursing Facilities , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Humans , Michigan/epidemiology , Middle Aged , Pneumonia, Viral/epidemiology , Prevalence
15.
JAMA Intern Med ; 180(8): 1101-1105, 2020 Aug 01.
Article in English | MEDLINE | ID: covidwho-326989

ABSTRACT

IMPORTANCE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused epidemic spread of coronavirus disease 2019 (COVID-19) in the Seattle, Washington, metropolitan area, with morbidity and mortality concentrated among residents of skilled nursing facilities. The prevalence of COVID-19 among older adults in independent/assisted living is not understood. OBJECTIVES: To conduct surveillance for SARS-CoV-2 and describe symptoms of COVID-19 among residents and staff of an independent/assisted living community. DESIGN, SETTING, AND PARTICIPANTS: In March 2020, public health surveillance of staff and residents was conducted on site at an assisted and independent living residence for older adults in Seattle, Washington, after exposure to 2 residents who were hospitalized with COVID-19. EXPOSURES: Surveillance for SARS-CoV-2 infection in a congregate setting implementing social isolation and infection prevention protocols. MAIN OUTCOMES AND MEASURES: SARS-CoV-2 real-time polymerase chain reaction was performed on nasopharyngeal swabs from residents and staff; a symptom questionnaire was completed assessing fever, cough, and other symptoms for the preceding 14 days. Residents were retested for SARS-CoV-2 7 days after initial screening. RESULTS: Testing was performed on 80 residents; 62 were women (77%), with mean age of 86 (range, 69-102) years. SARS-CoV-2 was detected in 3 of 80 residents (3.8%); none felt ill, 1 male resident reported resolved cough and 1 loose stool during the preceding 14 days. Virus was also detected in 2 of 62 staff (3.2%); both were symptomatic. One week later, resident SARS-CoV-2 testing was repeated and 1 new infection detected (asymptomatic). All residents remained in isolation and were clinically stable 14 days after the second test. CONCLUSIONS AND RELEVANCE: Detection of SARS-CoV-2 in asymptomatic residents highlights challenges in protecting older adults living in congregate settings. In this study, symptom screening failed to identify residents with infections and all 4 residents with SARS-CoV-2 remained asymptomatic after 14 days. Although 1 asymptomatic infection was found on retesting, a widespread facility outbreak was avoided. Compared with skilled nursing settings, in assisted/independent living communities, early surveillance to identify asymptomatic persons among residents and staff, in combination with adherence to recommended preventive strategies, may reduce viral spread.


Subject(s)
Assisted Living Facilities/organization & administration , Betacoronavirus , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Female , Housing for the Elderly , Humans , Male , Pandemics , Prevalence , SARS-CoV-2 , Washington/epidemiology
16.
N Engl J Med ; 382(22): 2081-2090, 2020 05 28.
Article in English | MEDLINE | ID: covidwho-116920

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can spread rapidly within skilled nursing facilities. After identification of a case of Covid-19 in a skilled nursing facility, we assessed transmission and evaluated the adequacy of symptom-based screening to identify infections in residents. METHODS: We conducted two serial point-prevalence surveys, 1 week apart, in which assenting residents of the facility underwent nasopharyngeal and oropharyngeal testing for SARS-CoV-2, including real-time reverse-transcriptase polymerase chain reaction (rRT-PCR), viral culture, and sequencing. Symptoms that had been present during the preceding 14 days were recorded. Asymptomatic residents who tested positive were reassessed 7 days later. Residents with SARS-CoV-2 infection were categorized as symptomatic with typical symptoms (fever, cough, or shortness of breath), symptomatic with only atypical symptoms, presymptomatic, or asymptomatic. RESULTS: Twenty-three days after the first positive test result in a resident at this skilled nursing facility, 57 of 89 residents (64%) tested positive for SARS-CoV-2. Among 76 residents who participated in point-prevalence surveys, 48 (63%) tested positive. Of these 48 residents, 27 (56%) were asymptomatic at the time of testing; 24 subsequently developed symptoms (median time to onset, 4 days). Samples from these 24 presymptomatic residents had a median rRT-PCR cycle threshold value of 23.1, and viable virus was recovered from 17 residents. As of April 3, of the 57 residents with SARS-CoV-2 infection, 11 had been hospitalized (3 in the intensive care unit) and 15 had died (mortality, 26%). Of the 34 residents whose specimens were sequenced, 27 (79%) had sequences that fit into two clusters with a difference of one nucleotide. CONCLUSIONS: Rapid and widespread transmission of SARS-CoV-2 was demonstrated in this skilled nursing facility. More than half of residents with positive test results were asymptomatic at the time of testing and most likely contributed to transmission. Infection-control strategies focused solely on symptomatic residents were not sufficient to prevent transmission after SARS-CoV-2 introduction into this facility.


Subject(s)
Asymptomatic Diseases , Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Disease Transmission, Infectious , Pneumonia, Viral/transmission , Skilled Nursing Facilities , Aged , Aged, 80 and over , Betacoronavirus/genetics , COVID-19 , Comorbidity , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Cough/etiology , Disease Transmission, Infectious/prevention & control , Dyspnea/etiology , Female , Fever/etiology , Genome, Viral , Humans , Infection Control/methods , Male , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Prevalence , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Viral Load , Washington/epidemiology
17.
MMWR Morb Mortal Wkly Rep ; 69(14): 416-418, 2020 Apr 10.
Article in English | MEDLINE | ID: covidwho-31686

ABSTRACT

In the Seattle, Washington metropolitan area, where the first case of novel coronavirus 2019 disease (COVID-19) in the United States was reported (1), a community-level outbreak is ongoing with evidence of rapid spread and high morbidity and mortality among older adults in long-term care skilled nursing facilities (SNFs) (2,3). However, COVID-19 morbidity among residents of senior independent and assisted living communities, in which residents do not live as closely together as do residents in SNFs and do not require skilled nursing services, has not been described. During March 5-9, 2020, two residents of a senior independent and assisted living community in Seattle (facility 1) were hospitalized with confirmed COVID-19 infection; on March 6, social distancing and other preventive measures were implemented in the community. UW Medicine (the health system linked to the University of Washington), Public Health - Seattle & King County, and CDC conducted an investigation at the facility. On March 10, all residents and staff members at facility 1 were tested for SARS-CoV-2, the virus that causes COVID-19, and asked to complete a questionnaire about their symptoms; all residents were tested again 7 days later. Among 142 residents and staff members tested during the initial phase, three of 80 residents (3.8%) and two of 62 staff members (3.2%) had positive test results. The three residents had no symptoms at the time of testing, although one reported an earlier cough that had resolved. A fourth resident, who had negative test results in the initial phase, had positive test results 7 days later. This resident was asymptomatic on both days. Possible explanations for so few cases of COVID-19 in this residential community compared with those in several Seattle SNFs with high morbidity and mortality include more social distancing among residents and less contact with health care providers. In addition, early implementation of stringent isolation and protective measures after identification of two COVID-19 cases might have been effective in minimizing spread of the virus in this type of setting. When investigating a potential outbreak of COVID-19 in senior independent and assisted living communities, symptom screening is unlikely to be sufficient to identify all persons infected with SARS-CoV-2. Adherence to CDC guidance to prevent COVID-19 transmission in senior independent and assisted living communities (4) could be instrumental in preventing a facility outbreak.


Subject(s)
Assisted Living Facilities , Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Disease Outbreaks , Housing for the Elderly , Adolescent , Adult , Aged , Aged, 80 and over , Asymptomatic Diseases , Centers for Disease Control and Prevention, U.S. , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Female , Humans , Male , Middle Aged , Practice Guidelines as Topic , SARS-CoV-2 , United States , Washington/epidemiology , Young Adult
18.
MMWR Morb Mortal Wkly Rep ; 69(13): 377-381, 2020 Apr 03.
Article in English | MEDLINE | ID: covidwho-31678

ABSTRACT

Older adults are susceptible to severe coronavirus disease 2019 (COVID-19) outcomes as a consequence of their age and, in some cases, underlying health conditions (1). A COVID-19 outbreak in a long-term care skilled nursing facility (SNF) in King County, Washington that was first identified on February 28, 2020, highlighted the potential for rapid spread among residents of these types of facilities (2). On March 1, a health care provider at a second long-term care skilled nursing facility (facility A) in King County, Washington, had a positive test result for SARS-CoV-2, the novel coronavirus that causes COVID-19, after working while symptomatic on February 26 and 28. By March 6, seven residents of this second facility were symptomatic and had positive test results for SARS-CoV-2. On March 13, CDC performed symptom assessments and SARS-CoV-2 testing for 76 (93%) of the 82 facility A residents to evaluate the utility of symptom screening for identification of COVID-19 in SNF residents. Residents were categorized as asymptomatic or symptomatic at the time of testing, based on the absence or presence of fever, cough, shortness of breath, or other symptoms on the day of testing or during the preceding 14 days. Among 23 (30%) residents with positive test results, 10 (43%) had symptoms on the date of testing, and 13 (57%) were asymptomatic. Seven days after testing, 10 of these 13 previously asymptomatic residents had developed symptoms and were recategorized as presymptomatic at the time of testing. The reverse transcription-polymerase chain reaction (RT-PCR) testing cycle threshold (Ct) values indicated large quantities of viral RNA in asymptomatic, presymptomatic, and symptomatic residents, suggesting the potential for transmission regardless of symptoms. Symptom-based screening in SNFs could fail to identify approximately half of residents with COVID-19. Long-term care facilities should take proactive steps to prevent introduction of SARS-CoV-2 (3). Once a confirmed case is identified in an SNF, all residents should be placed on isolation precautions if possible (3), with considerations for extended use or reuse of personal protective equipment (PPE) as needed (4).


Subject(s)
Asymptomatic Diseases/epidemiology , Betacoronavirus/isolation & purification , Coronavirus Infections/epidemiology , Disease Outbreaks , Pneumonia, Viral/epidemiology , Skilled Nursing Facilities , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Female , Humans , Long-Term Care , Male , Pandemics , SARS-CoV-2 , Washington/epidemiology
19.
MMWR Morb Mortal Wkly Rep ; 69(12): 339-342, 2020 Mar 27.
Article in English | MEDLINE | ID: covidwho-18477

ABSTRACT

On February 28, 2020, a case of coronavirus disease (COVID-19) was identified in a woman resident of a long-term care skilled nursing facility (facility A) in King County, Washington.* Epidemiologic investigation of facility A identified 129 cases of COVID-19 associated with facility A, including 81 of the residents, 34 staff members, and 14 visitors; 23 persons died. Limitations in effective infection control and prevention and staff members working in multiple facilities contributed to intra- and interfacility spread. COVID-19 can spread rapidly in long-term residential care facilities, and persons with chronic underlying medical conditions are at greater risk for COVID-19-associated severe disease and death. Long-term care facilities should take proactive steps to protect the health of residents and preserve the health care workforce by identifying and excluding potentially infected staff members and visitors, ensuring early recognition of potentially infected patients, and implementing appropriate infection control measures.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Disease Outbreaks , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Residential Facilities , Skilled Nursing Facilities , Adult , Aged , Aged, 80 and over , COVID-19 , Chronic Disease , Coronavirus Infections/mortality , Coronavirus Infections/prevention & control , Disease Outbreaks/prevention & control , Fatal Outcome , Female , Humans , Infection Control/standards , Long-Term Care , Male , Middle Aged , Pneumonia, Viral/mortality , Pneumonia, Viral/prevention & control , Risk Factors , Washington/epidemiology , Young Adult
20.
N Engl J Med ; 382(21): 2005-2011, 2020 05 21.
Article in English | MEDLINE | ID: covidwho-17812

ABSTRACT

BACKGROUND: Long-term care facilities are high-risk settings for severe outcomes from outbreaks of Covid-19, owing to both the advanced age and frequent chronic underlying health conditions of the residents and the movement of health care personnel among facilities in a region. METHODS: After identification on February 28, 2020, of a confirmed case of Covid-19 in a skilled nursing facility in King County, Washington, Public Health-Seattle and King County, aided by the Centers for Disease Control and Prevention, launched a case investigation, contact tracing, quarantine of exposed persons, isolation of confirmed and suspected cases, and on-site enhancement of infection prevention and control. RESULTS: As of March 18, a total of 167 confirmed cases of Covid-19 affecting 101 residents, 50 health care personnel, and 16 visitors were found to be epidemiologically linked to the facility. Most cases among residents included respiratory illness consistent with Covid-19; however, in 7 residents no symptoms were documented. Hospitalization rates for facility residents, visitors, and staff were 54.5%, 50.0%, and 6.0%, respectively. The case fatality rate for residents was 33.7% (34 of 101). As of March 18, a total of 30 long-term care facilities with at least one confirmed case of Covid-19 had been identified in King County. CONCLUSIONS: In the context of rapidly escalating Covid-19 outbreaks, proactive steps by long-term care facilities to identify and exclude potentially infected staff and visitors, actively monitor for potentially infected patients, and implement appropriate infection prevention and control measures are needed to prevent the introduction of Covid-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Disease Transmission, Infectious , Infection Control/methods , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Skilled Nursing Facilities , Adult , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Contact Tracing , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Disease Outbreaks , Disease Transmission, Infectious/prevention & control , Female , Health Personnel , Humans , Long-Term Care , Male , Middle Aged , Pneumonia, Viral/mortality , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Washington/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL