Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add filters

Year range
2.
Cell Res ; 2021 Nov 04.
Article in English | MEDLINE | ID: covidwho-1505077

ABSTRACT

In contrast to the extensive research about viral protein-host protein interactions that has revealed major insights about how RNA viruses engage with host cells during infection, few studies have examined interactions between host factors and viral RNAs (vRNAs). Here, we profiled vRNA-host protein interactomes for three RNA virus pathogens (SARS-CoV-2, Zika, and Ebola viruses) using ChIRP-MS. Comparative interactome analyses discovered both common and virus-specific host responses and vRNA-associated proteins that variously promote or restrict viral infection. In particular, SARS-CoV-2 binds and hijacks the host factor IGF2BP1 to stabilize vRNA and augment viral translation. Our interactome-informed drug repurposing efforts identified several FDA-approved drugs (e.g., Cepharanthine) as broad-spectrum antivirals in cells and hACE2 transgenic mice. A co-treatment comprising Cepharanthine and Trifluoperazine was highly potent against the newly emerged SARS-CoV-2 B.1.351 variant. Thus, our study illustrates the scientific and medical discovery utility of adopting a comparative vRNA-host protein interactome perspective.

3.
Signal Transduct Target Ther ; 6(1): 382, 2021 11 03.
Article in English | MEDLINE | ID: covidwho-1500449

ABSTRACT

The global coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive-sense RNA virus. How the host immune system senses and responds to SARS-CoV-2 infection remain largely unresolved. Here, we report that SARS-CoV-2 infection activates the innate immune response through the cytosolic DNA sensing cGAS-STING pathway. SARS-CoV-2 infection induces the cellular level of 2'3'-cGAMP associated with STING activation. cGAS recognizes chromatin DNA shuttled from the nucleus as a result of cell-to-cell fusion upon SARS-CoV-2 infection. We further demonstrate that the expression of spike protein from SARS-CoV-2 and ACE2 from host cells is sufficient to trigger cytoplasmic chromatin upon cell fusion. Furthermore, cytoplasmic chromatin-cGAS-STING pathway, but not MAVS-mediated viral RNA sensing pathway, contributes to interferon and pro-inflammatory gene expression upon cell fusion. Finally, we show that cGAS is required for host antiviral responses against SARS-CoV-2, and a STING-activating compound potently inhibits viral replication. Together, our study reported a previously unappreciated mechanism by which the host innate immune system responds to SARS-CoV-2 infection, mediated by cytoplasmic chromatin from the infected cells. Targeting the cytoplasmic chromatin-cGAS-STING pathway may offer novel therapeutic opportunities in treating COVID-19. In addition, these findings extend our knowledge in host defense against viral infection by showing that host cells' self-nucleic acids can be employed as a "danger signal" to alarm the immune system.


Subject(s)
COVID-19/immunology , Chromatin/immunology , Cytoplasm/immunology , Immunity, Innate , Nucleotidyltransferases/immunology , SARS-CoV-2/immunology , Animals , COVID-19/genetics , Chromatin/genetics , Cytoplasm/genetics , Disease Models, Animal , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Transgenic , Nucleotidyltransferases/genetics , SARS-CoV-2/genetics
5.
Atmospheric Chemistry and Physics ; 21(20):15431-15445, 2021.
Article in English | ProQuest Central | ID: covidwho-1471136

ABSTRACT

Due to the coronavirus disease 2019 (COVID-19) pandemic, human activities and industrial productions were strictly restricted during January–March 2020 in China. Despite the fact that anthropogenic aerosol emissions largely decreased, haze events still occurred. Characterization of aerosol transport pathways and attribution of aerosol sources from specific regions are beneficial to air quality and pandemic control strategies. This study establishes source–receptor relationships in various regions covering all of China during the COVID-19 outbreak based on the Community Atmosphere Model version 5 with Explicit Aerosol Source Tagging (CAM5-EAST). Our analysis shows that PM2.5 burden over the North China Plain between 30 January and 19 February is mostly contributed by local emissions (40 %–66 %). For other regions in China, PM2.5 burden is largely contributed from nonlocal sources. During the most polluted days of the COVID-19 outbreak, local emissions within the North China Plain and eastern China contributed 66 % and 87 % to the increase in surface PM2.5 concentrations, respectively. This is associated with the anomalous mid-tropospheric high pressure at the location of the climatological East Asia trough and the consequently weakened winds in the lower troposphere, leading to the local aerosol accumulation. The emissions outside China, especially those from South Asia and Southeast Asia, contribute over 50 % to the increase in PM2.5 concentration in southwestern China through transboundary transport during the most polluted day. As the reduction in emissions in the near future is desirable, aerosols from long-range transport and unfavorable meteorological conditions are increasingly important to regional air quality and need to be taken into account in clean-air plans.

6.
Am J Respir Crit Care Med ; 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1430274

ABSTRACT

RATIONALE: Alteration of human respiratory microbiota had been observed in COVID-19. How the microbiota is associated with the prognosis in COVID-19 is unclear. OBJECTIVES: To characterize the feature and dynamics of the respiratory microbiota and its associations with clinical features in COVID-19 patients. Methods:We conducted metatranscriptome sequencing on 588 longitudinal oropharyngeal swab specimens collected from 192 COVID-19 patients (including 39 deceased patients), and 95 healthy controls from the same geographic area. Meanwhile, the concentration of 27 cytokines and chemokines in plasma was measured for COVID-19 patients. MEASUREMENTS AND MAIN RESULTS: The upper respiratory tract (URT) microbiota in COVID-19 patients differed from that in healthy controls, while deceased patients possessed a more distinct microbiota, both on admission and before discharge/death. The alteration of URT microbiota showed a significant correlation with the concentration of proinflammatory cytokines and mortality. Specifically, Streptococcus-dominated microbiota was enriched in recovered patients, and show high temporal stability and resistance against pathogens. In contrast, the microbiota in deceased patients was more susceptible to secondary infections, and became more deviated from the normality after admission. Moreover, the abundance of S. parasanguinis on admission was significantly correlated with prognosis in non-severe patients (lower vs. higher abundance, odds ratio=7.80, [95% CI 1.70-42.05]). Conclusions:URT microbiota dysbiosis is a remarkable manifestation of COVID-19; its association with mortality suggests it may reflect the interplay between pathogens, symbionts, and the host immune status. Whether URT microbiota could be used as a biomarker for the diagnosis and prognosis of respiratory diseases merits further investigation. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

7.
Clin Infect Dis ; 2021 Sep 09.
Article in English | MEDLINE | ID: covidwho-1402369

ABSTRACT

A false-positive SARS-CoV-2 RT-PCR result can lead to unnecessary public-health measures. We report two individuals whose respiratory specimens were contaminated by inactivated SARS-CoV-2 vaccine strain(CoronaVac), likely at vaccination premises. Incidentally, whole-genome sequencing of CoronaVac showed adaptive deletions on the spike protein, which do not result in observable changes of antigenicity.

8.
Biosaf Health ; 3(5): 238-243, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1401267

ABSTRACT

Many factors have been identified as having the ability to affect the sensitivity of rapid antigen detection (RAD) tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study aimed to identify the impact of sample processing on the sensitivity of the RAD tests. We explored the effect of different inactivation methods, viral transport media (VTM) solutions, and sample preservation on the sensitivity of four RAD kits based on two SARS-CoV-2 strains. Compared with non-inactivation, heat inactivation significantly impacted the sensitivity of most RAD kits; however, ß-propiolactone inactivation only had a minor effect. Some of the VTM solutions (VTM2, MANTACC) had a significant influence on the sensitivity of the RAD kits, especially for low viral-loads samples. The detection value of RAD kits was slightly decreased, while most of them were still in the detection range with the extension of preservation time and the increase of freeze-thaw cycles. Our results showed that selecting the appropriate inactivation methods and VTM solutions is necessary during reagent development, performance evaluation, and clinical application.

11.
Lancet ; 398(10302): 747-758, 2021 08 28.
Article in English | MEDLINE | ID: covidwho-1376121

ABSTRACT

BACKGROUND: The full range of long-term health consequences of COVID-19 in patients who are discharged from hospital is largely unclear. The aim of our study was to comprehensively compare consequences between 6 months and 12 months after symptom onset among hospital survivors with COVID-19. METHODS: We undertook an ambidirectional cohort study of COVID-19 survivors who had been discharged from Jin Yin-tan Hospital (Wuhan, China) between Jan 7 and May 29, 2020. At 6-month and 12-month follow-up visit, survivors were interviewed with questionnaires on symptoms and health-related quality of life (HRQoL), and received a physical examination, a 6-min walking test, and laboratory tests. They were required to report their health-care use after discharge and work status at the 12-month visit. Survivors who had completed pulmonary function tests or had lung radiographic abnormality at 6 months were given the corresponding tests at 12 months. Non-COVID-19 participants (controls) matched for age, sex, and comorbidities were interviewed and completed questionnaires to assess prevalent symptoms and HRQoL. The primary outcomes were symptoms, modified British Medical Research Council (mMRC) score, HRQoL, and distance walked in 6 min (6MWD). Multivariable adjusted logistic regression models were used to evaluate the risk factors of 12-month outcomes. FINDINGS: 1276 COVID-19 survivors completed both visits. The median age of patients was 59·0 years (IQR 49·0-67·0) and 681 (53%) were men. The median follow-up time was 185·0 days (IQR 175·0-198·0) for the 6-month visit and 349·0 days (337·0-361·0) for the 12-month visit after symptom onset. The proportion of patients with at least one sequelae symptom decreased from 68% (831/1227) at 6 months to 49% (620/1272) at 12 months (p<0·0001). The proportion of patients with dyspnoea, characterised by mMRC score of 1 or more, slightly increased from 26% (313/1185) at 6-month visit to 30% (380/1271) at 12-month visit (p=0·014). Additionally, more patients had anxiety or depression at 12-month visit (26% [331/1271] at 12-month visit vs 23% [274/1187] at 6-month visit; p=0·015). No significant difference on 6MWD was observed between 6 months and 12 months. 88% (422/479) of patients who were employed before COVID-19 had returned to their original work at 12 months. Compared with men, women had an odds ratio of 1·43 (95% CI 1·04-1·96) for fatigue or muscle weakness, 2·00 (1·48-2·69) for anxiety or depression, and 2·97 (1·50-5·88) for diffusion impairment. Matched COVID-19 survivors at 12 months had more problems with mobility, pain or discomfort, and anxiety or depression, and had more prevalent symptoms than did controls. INTERPRETATION: Most COVID-19 survivors had a good physical and functional recovery during 1-year follow-up, and had returned to their original work and life. The health status in our cohort of COVID-19 survivors at 12 months was still lower than that in the control population. FUNDING: Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, the National Natural Science Foundation of China, the National Key Research and Development Program of China, Major Projects of National Science and Technology on New Drug Creation and Development of Pulmonary Tuberculosis, the China Evergrande Group, Jack Ma Foundation, Sino Biopharmaceutical, Ping An Insurance (Group), and New Sunshine Charity Foundation.


Subject(s)
COVID-19/complications , Survivors , Aged , Anxiety/etiology , COVID-19/physiopathology , COVID-19/psychology , Depression/etiology , Exercise Tolerance , Fatigue/etiology , Female , Follow-Up Studies , Humans , Longitudinal Studies , Lung/physiopathology , Male , Middle Aged , Muscle Weakness/etiology , Quality of Life , SARS-CoV-2 , Walk Test
12.
Geophysical Research Letters ; 47(19), 2020.
Article in English | CAB Abstracts | ID: covidwho-1263469

ABSTRACT

The reduced human activities and associated decreases in aerosol emissions during the COVID-19 pandemic are expected to affect climate. Assuming emission changes during lockdown, back-to-work and post-lockdown stages of COVID-19, climate model simulations show a surface warming over continental regions of the Northern Hemisphere. In January-March, there was an anomalous warming of 0.05-0.15 K in eastern China, and the surface temperature increase was 0.04-0.07 K in Europe, eastern United States, and South Asia in March-May. The longer the emission reductions undergo, the warmer the climate would become. The emission reductions explain the observed temperature increases of 10-40% over eastern China relative to 2019. A southward shift of the ITCZ is also seen in the simulations. This study provides an insight into the impact of COVID-19 pandemic on global and regional climate and implications for immediate actions to mitigate fast global warming.

13.
Natl Sci Rev ; 8(4): nwab006, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1254806

ABSTRACT

After a short recovery period, COVID-19 reinfections could occur in convalescent patients, even those with measurable levels of neutralizing antibodies. Effective vaccinations and protective public health measures are recommended for the convalescent COVID-19 patients.

14.
Emerg Microbes Infect ; 10(1): 1227-1240, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1246665

ABSTRACT

The ongoing pandemic of COVID-19, caused by SARS-CoV-2, has severely impacted the global public health and socio-economic stability, calling for effective vaccines and therapeutics. In this study, we continued our efforts to develop more efficient SARS-CoV-2 fusion inhibitors and achieved significant findings. First, we found that the membrane-proximal external region (MPER) sequence of SARS-CoV-2 spike fusion protein plays a critical role in viral infectivity and can serve as an ideal template for design of fusion-inhibitory peptides. Second, a panel of novel lipopeptides was generated with greatly improved activity in inhibiting SARS-CoV-2 fusion and infection. Third, we showed that the new inhibitors maintained the potent inhibitory activity against emerging SARS-CoV-2 variants, including those with the major mutations of the B.1.1.7 and B.1.351 strains circulating in the United Kingdom and South Africa, respectively. Fourth, the new inhibitors also cross-inhibited other human CoVs, including SARS-CoV, MERS-CoV, HCoV-229E, and HCoV-NL63. Fifth, the structural properties of the new inhibitors were characterized by circular dichroism (CD) spectroscopy and crystallographic approach, which revealed the mechanisms underlying the high binding and inhibition. Combined, our studies provide important information for understanding the mechanism of SARS-CoV-2 fusion and a framework for the development of peptide therapeutics for the treatment of SARS-CoV-2 and other CoVs.


Subject(s)
Drug Design , Lipopeptides/chemical synthesis , Lipopeptides/pharmacology , SARS-CoV-2/drug effects , Virus Attachment/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cell Fusion , Cell Survival/drug effects , Chlorocebus aethiops , Communicable Diseases, Emerging/virology , HEK293 Cells , Humans , Mutagenesis, Site-Directed , Protein Conformation , Vero Cells
15.
Clin Infect Dis ; 72(7): 1293, 2021 04 08.
Article in English | MEDLINE | ID: covidwho-1238184

Subject(s)
COVID-19 , SARS-CoV-2 , Humans
16.
Clin Infect Dis ; 72(10): e545-e551, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1232187

ABSTRACT

BACKGROUND: The characteristics of neutralizing antibodies (NAbs) and antibody against major antigen proteins related to clinical outcomes in severe coronavirus disease 2019 (COVID-19) patients were still less known. METHODS: NAbs and antibodies targeting nucleocapsid (N), spike protein (S), and the receptor-binding domain (RBD) in longitudinal plasma samples from the LOTUS China trial were measured by microneutralization assay and enzyme-linked immunosorbent assay (ELISA). Viral load was determined by real-time reverse transcription polymerase chain reaction (RT-PCR). A total of 576 plasma and 576 throat swabs were collected from 191 COVID-19 patients. Antibody titers related to adverse outcome and clinical improvement were analyzed. Multivariable adjusted generalized linear mixed model for random effects were developed. RESULTS: After day 28 post symptoms onset, the rate of antibody positivity reached 100% for RBD-immunoglobulin M (IgM), 97.8% for S-IgM, 100% for N-immunoglobulin G (IgG), 100% for RBD-IgG, 91.1% for N-IgM, and 91.1% for NAbs. The NAbs titers increased over time in both survivors and nonsurvivors and correlated to IgG antibodies against N, S, and RBD, whereas its presence showed no statistical correlation with death. N-IgG (slope -2.11, 95% confidence interval [CI] -3.04 to -1.18, P < .0001), S-IgG (slope -2.44, 95% CI -3.35 to -1.54, P < .0001), and RBD-IgG (slope -1.43, 95% CI -1.98 to -.88, P < .0001) were negatively correlated with viral load. S-IgG titers were lower in nonsurvivors than survivors (P = .020) at week 4 after symptoms onset. CONCLUSIONS: IgM and IgG against N, S, and RBD and NAbs developed in most severe COVID-19 patients and do not correlate clearly with clinical outcomes. The levels of IgG antibodies against N, S, and RBD were related to viral clearance.


Subject(s)
COVID-19 , Adult , Antibodies, Viral , Antibody Formation , China/epidemiology , Humans , Immunoglobulin M , SARS-CoV-2
17.
Clin Infect Dis ; 71(15): 778-785, 2020 07 28.
Article in English | MEDLINE | ID: covidwho-1217823

ABSTRACT

BACKGROUND: The emergence of coronavirus disease 2019 (COVID-19) is a major healthcare threat. The current method of detection involves a quantitative polymerase chain reaction (qPCR)-based technique, which identifies the viral nucleic acids when present in sufficient quantity. False-negative results can be achieved and failure to quarantine the infected patient would be a major setback in containing the viral transmission. We aim to describe the time kinetics of various antibodies produced against the 2019 novel coronavirus (SARS-CoV-2) and evaluate the potential of antibody testing to diagnose COVID-19. METHODS: The host humoral response against SARS-CoV-2, including IgA, IgM, and IgG response, was examined by using an ELISA-based assay on the recombinant viral nucleocapsid protein. 208 plasma samples were collected from 82 confirmed and 58 probable cases (qPCR negative but with typical manifestation). The diagnostic value of IgM was evaluated in this cohort. RESULTS: The median duration of IgM and IgA antibody detection was 5 (IQR, 3-6) days, while IgG was detected 14 (IQR, 10-18) days after symptom onset, with a positive rate of 85.4%, 92.7%, and 77.9%, respectively. In confirmed and probable cases, the positive rates of IgM antibodies were 75.6% and 93.1%, respectively. The detection efficiency by IgM ELISA is higher than that of qPCR after 5.5 days of symptom onset. The positive detection rate is significantly increased (98.6%) when combining IgM ELISA assay with PCR for each patient compared with a single qPCR test (51.9%). CONCLUSIONS: The humoral response to SARS-CoV-2 can aid in the diagnosis of COVID-19, including subclinical cases.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Immunity, Humoral/immunology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Adult , Amino Acid Sequence , Antibodies, Viral/immunology , COVID-19 , Child , Child, Preschool , Coronavirus Infections/virology , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , Polymerase Chain Reaction/methods , SARS-CoV-2
18.
Virol Sin ; 36(5): 890-900, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1174013

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating pandemic worldwide. Vaccines and antiviral drugs are the most promising candidates for combating this global epidemic, and scientists all over the world have made great efforts to this end. However, manipulation of the SARS-CoV-2 should be performed in the biosafety level 3 laboratory. This makes experiments complicated and time-consuming. Therefore, a safer system for working with this virus is urgently needed. Here, we report the construction of plasmid-based, non-infectious SARS-CoV-2 replicons with turbo-green fluorescent protein and/or firefly luciferase reporters by reverse genetics using transformation-associated recombination cloning in Saccharomyces cerevisiae. Replication of these replicons was achieved simply by direct transfection of cells with the replicon plasmids as evident by the expression of reporter genes. Using SARS-CoV-2 replicons, the inhibitory effects of E64-D and remdesivir on SARS-CoV-2 replication were confirmed, and the half-maximal effective concentration (EC50) value of remdesivir and E64-D was estimated by different quantification methods respectively, indicating that these SARS-CoV-2 replicons are useful tools for antiviral drug evaluation.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Drug Evaluation , Humans , Replicon , Virus Replication
19.
The Lancet ; 397(10270):220-232, 2021.
Article in English | APA PsycInfo | ID: covidwho-1164655

ABSTRACT

Presents a study which aims to examine consequences of COVID-19 in patients discharged from hospital for 6-months. This ambidirectional cohort study was done at Jin Yin-tan Hospital, the first designated hospital for patients with COVID-19 in Wuhan, Hubei, China. Clinical data for acute phase were retrieved from electronic medical records, including demographic characteristics, clinical characteristics, laboratory test results;and treatment. The disease severity was characterized by the highest seven-category scale during the hospital stay. Data were managed using REDCap electronic data capture tools in order to minimize missing inputs and allow for real-time data validation and quality control. Follow-up consultations were done in the outpatient clinic of Jin Yin-tan Hospital. All participants were interviewed face-to-face by trained physicians and asked to complete a series of questionnaires. For the symptom questionnaire, participants were asked to report newly occurring and persistent symptoms, or any symptoms worse than before COVID-19 development. A total of 2469 patients with COVID-19 were discharged from Jin Yin-tan Hospital between Jan 7, and May 29, 2020, and the follow-up study was done from June 16, 2020, to Sept 3, 2020. This is the largest cohort study with the longest follow-up duration assessing the health consequences of adult patients discharged from hospital recovering from COVID-19. (PsycInfo Database Record (c) 2021 APA, all rights reserved)

20.
Lancet ; 397(10279): 1075-1084, 2021 03 20.
Article in English | MEDLINE | ID: covidwho-1142326

ABSTRACT

BACKGROUND: Wuhan was the epicentre of the COVID-19 outbreak in China. We aimed to determine the seroprevalence and kinetics of anti-SARS-CoV-2 antibodies at population level in Wuhan to inform the development of vaccination strategies. METHODS: In this longitudinal cross-sectional study, we used a multistage, population-stratified, cluster random sampling method to systematically select 100 communities from the 13 districts of Wuhan. Households were systematically selected from each community and all family members were invited to community health-care centres to participate. Eligible individuals were those who had lived in Wuhan for at least 14 days since Dec 1, 2019. All eligible participants who consented to participate completed a standardised electronic questionnaire of demographic and clinical questions and self-reported any symptoms associated with COVID-19 or previous diagnosis of COVID-19. A venous blood sample was taken for immunological testing on April 14-15, 2020. Blood samples were tested for the presence of pan-immunoglobulins, IgM, IgA, and IgG antibodies against SARS-CoV-2 nucleocapsid protein and neutralising antibodies were assessed. We did two successive follow-ups between June 11 and June 13, and between Oct 9 and Dec 5, 2020, at which blood samples were taken. FINDINGS: Of 4600 households randomly selected, 3599 families (78·2%) with 9702 individuals attended the baseline visit. 9542 individuals from 3556 families had sufficient samples for analyses. 532 (5·6%) of 9542 participants were positive for pan-immunoglobulins against SARS-CoV-2, with a baseline adjusted seroprevalence of 6·92% (95% CI 6·41-7·43) in the population. 437 (82·1%) of 532 participants who were positive for pan-immunoglobulins were asymptomatic. 69 (13·0%) of 532 individuals were positive for IgM antibodies, 84 (15·8%) were positive for IgA antibodies, 532 (100%) were positive for IgG antibodies, and 212 (39·8%) were positive for neutralising antibodies at baseline. The proportion of individuals who were positive for pan-immunoglobulins who had neutralising antibodies in April remained stable for the two follow-up visits (162 [44·6%] of 363 in June, 2020, and 187 [41·2%] of 454 in October-December, 2020). On the basis of data from 335 individuals who attended all three follow-up visits and who were positive for pan-immunoglobulins, neutralising antibody levels did not significantly decrease over the study period (median 1/5·6 [IQR 1/2·0 to 1/14·0] at baseline vs 1/5·6 [1/4·0 to 1/11·2] at first follow-up [p=1·0] and 1/6·3 [1/2·0 to 1/12·6] at second follow-up [p=0·29]). However, neutralising antibody titres were lower in asymptomatic individuals than in confirmed cases and symptomatic individuals. Although titres of IgG decreased over time, the proportion of individuals who had IgG antibodies did not decrease substantially (from 30 [100%] of 30 at baseline to 26 [89·7%] of 29 at second follow-up among confirmed cases, 65 [100%] of 65 at baseline to 58 [92·1%] of 63 at second follow-up among symptomatic individuals, and 437 [100%] of 437 at baseline to 329 [90·9%] of 362 at second follow-up among asymptomatic individuals). INTERPRETATION: 6·92% of a cross-sectional sample of the population of Wuhan developed antibodies against SARS-CoV-2, with 39·8% of this population seroconverting to have neutralising antibodies. Our durability data on humoral responses indicate that mass vaccination is needed to effect herd protection to prevent the resurgence of the epidemic. FUNDING: Chinese Academy of Medical Sciences & Peking Union Medical College, National Natural Science Foundation, and Chinese Ministry of Science and Technology. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , China/epidemiology , Coronavirus Nucleocapsid Proteins/immunology , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Immunity, Herd/immunology , Immunity, Humoral , Infant , Infant, Newborn , Longitudinal Studies , Male , Mass Vaccination/organization & administration , Middle Aged , Seroepidemiologic Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...