Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Front Med (Lausanne) ; 10: 1176427, 2023.
Article in English | MEDLINE | ID: covidwho-20244343

ABSTRACT

Background: Acute respiratory distress syndrome (ARDS) in corona virus disease 19 (COVID-19) is triggered by hyperinflammation, thus providing a rationale for immunosuppressive treatments. The Janus kinase inhibitor Ruxolitinib (Ruxo) has shown efficacy in severe and critical COVID-19. In this study, we hypothesized that Ruxo's mode of action in this condition is reflected by changes in the peripheral blood proteome. Methods: This study included 11 COVID-19 patients, who were treated at our center's Intensive Care Unit (ICU). All patients received standard-of-care treatment and n = 8 patients with ARDS received Ruxo in addition. Blood samples were collected before (day 0) and on days 1, 6, and 10 of Ruxo treatment or, respectively, ICU admission. Serum proteomes were analyzed by mass spectrometry (MS) and cytometric bead array. Results: Linear modeling of MS data yielded 27 significantly differentially regulated proteins on day 1, 69 on day 6 and 72 on day 10. Only five factors (IGLV10-54, PSMB1, PGLYRP1, APOA5, WARS1) were regulated both concordantly and significantly over time. Overrepresentation analysis revealed biological processes involving T-cells only on day 1, while a humoral immune response and complement activation were detected at day 6 and day 10. Pathway enrichment analysis identified the NRF2-pathway early under Ruxo treatment and Network map of SARS-CoV-2 signaling and Statin inhibition of cholesterol production at later time points. Conclusion: Our results indicate that the mechanism of action of Ruxo in COVID-19-ARDS can be related to both known effects of this drug as a modulator of T-cells and the SARS-CoV-2-infection.

2.
Epidemics ; 43: 100680, 2023 06.
Article in English | MEDLINE | ID: covidwho-2261055

ABSTRACT

In January 2022, after the implementation of broad vaccination programs, the Omicron wave was propagating across Europe. There was an urgent need to understand how population immunity affects the dynamics of the COVID-19 pandemic when the loss of vaccine protection was concurrent with the emergence of a new variant of concern. In particular, assessing the risk of saturation of the healthcare systems was crucial to manage the pandemic and allow a transition towards the endemic course of SARS-CoV-2 by implementing more refined mitigation strategies that shield the most vulnerable groups and protect the healthcare systems. We investigated the epidemic dynamics by means of compartmental models that describe the age-stratified social-mixing and consider vaccination status, type, and waning of the efficacy. In response to the acute situation, our model aimed at (i) providing insight into the plausible scenarios that were likely to occur in Switzerland and Germany in the midst of the Omicron wave, (ii) informing public health authorities, and (iii) helping take informed decisions to minimize negative consequences of the pandemic. Despite the unprecedented numbers of new positive cases, our results suggested that, in all plausible scenarios, the wave was unlikely to create an overwhelming healthcare demand; due to the lower hospitalization rate and the effectiveness of the vaccines in preventing a severe course of the disease. This prediction came true and the healthcare systems in Switzerland and Germany were not pushed to the limit, despite the unprecedentedly large number of infections. By retrospective comparison of the model predictions with the official reported data of the epidemic dynamic, we demonstrate the ability of the model to capture the main features of the epidemic dynamic and the corresponding healthcare demand. In a broader context, our framework can be applied also to endemic scenarios, offering quantitative support for refined public health interventions in response to recurring waves of COVID-19 or other infectious diseases.


Subject(s)
COVID-19 , Pandemics , Humans , Switzerland/epidemiology , Retrospective Studies , COVID-19/epidemiology , SARS-CoV-2 , Germany/epidemiology
3.
Epidemics ; 2023.
Article in English | EuropePMC | ID: covidwho-2261054

ABSTRACT

In January 2022, after the implementation of broad vaccination programs, the Omicron wave was propagating across Europe. There was an urgent need to understand how population immunity affects the dynamics of the COVID-19 pandemic when the loss of vaccine protection was concurrent with the emergence of a new variant of concern. In particular, assessing the risk of saturation of the healthcare systems was crucial to manage the pandemic and allow a transition towards the endemic course of SARS-CoV-2 by implementing more refined mitigation strategies that shield the most vulnerable groups and protect the healthcare systems. We investigated the epidemic dynamics by means of compartmental models that describe the age-stratified social-mixing and consider vaccination status, type, and waning of the efficacy. In response to the acute situation, our model aimed at (i) providing insight into the plausible scenarios that were likely to occur in Switzerland and Germany in the midst of the Omicron wave, (ii) informing public health authorities, and (iii) helping take informed decisions to minimize negative consequences of the pandemic. Despite the unprecedented numbers of new positive cases, our results suggested that, in all plausible scenarios, the wave was unlikely to create an overwhelming healthcare demand;due to the lower hospitalization rate and the effectiveness of the vaccines in preventing a severe course of the disease. This prediction came true and the healthcare systems in Switzerland and Germany were not pushed to the limit, despite the unprecedentedly large number of infections. By retrospective comparison of the model predictions with the official reported data of the epidemic dynamic, we demonstrate the ability of the model to capture the main features of the epidemic dynamic and the corresponding healthcare demand. In a broader context, our framework can be applied also to endemic scenarios, offering quantitative support for refined public health interventions in response to recurring waves of COVID-19 or other infectious diseases.

4.
Rev Med Virol ; : e2365, 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-2242339

ABSTRACT

The aim of this systematic review and meta-analysis was to critically assess the published literature related to community-acquired viral co-infections and COVID-19 and to evaluate the prevalence, most identified co-pathogens, and relevant risk factors. Furthermore, we aimed to examine the clinical features and outcomes of co-infected compared to mono-infected COVID-19 patients. We systematically searched PubMed, Web of Science, Embase, Scopus, and The Cochrane Library for studies published from 1 November 2019 to 13 August 2021. We included patients of all ages and any COVID-19 severity who were screened for respiratory viral co-infection within 48 h of COVID-19 diagnosis. The main outcome was the proportion of patients with a respiratory viral co-infection. The systematic review was registered to PROSPERO (CRD42021272235). Out of 6053 initially retrieved studies, 59 studies with a total of 16,643 SARS-CoV-2 positive patients were included. The global pooled prevalence was 5.01% (95% CI 3.34%-7.27%; I2  = 95%) based on a random-effects model, with Influenza Viruses (1.54%) and Enteroviruses (1.32%) being the most prevalent pathogens. Subgroup analyses showed that co-infection was significantly higher in paediatric (9.39%) than adult (3.51%) patients (p-value = 0.02). Furthermore, co-infected patients were more likely to be dyspnoeic and the odds of fatality (OR = 1.66) were increased. Although a relatively low proportion of COVID-19 patients have a respiratory viral co-infection, our findings show that multiplex viral panel testing may be advisable in patients with compatible symptoms. Indeed, respiratory virus co-infections may be associated with adverse clinical outcomes and therefore have therapeutic and prognostic implications.

5.
JCI Insight ; 8(3)2023 02 08.
Article in English | MEDLINE | ID: covidwho-2229935

ABSTRACT

The widespread presence of autoantibodies in acute infection with SARS-CoV-2 is increasingly recognized, but the prevalence of autoantibodies in non-SARS-CoV-2 infections and critical illness has not yet been reported. We profiled IgG autoantibodies in 267 patients from 5 independent cohorts with non-SARS-CoV-2 viral, bacterial, and noninfectious critical illness. Serum samples were screened using Luminex arrays that included 58 cytokines and 55 autoantigens, many of which are associated with connective tissue diseases (CTDs). Samples positive for anti-cytokine antibodies were tested for receptor blocking activity using cell-based functional assays. Anti-cytokine antibodies were identified in > 50% of patients across all 5 acutely ill cohorts. In critically ill patients, anti-cytokine antibodies were far more common in infected versus uninfected patients. In cell-based functional assays, 11 of 39 samples positive for select anti-cytokine antibodies displayed receptor blocking activity against surface receptors for Type I IFN, GM-CSF, and IL-6. Autoantibodies against CTD-associated autoantigens were also commonly observed, including newly detected antibodies that emerged in longitudinal samples. These findings demonstrate that anti-cytokine and autoantibodies are common across different viral and nonviral infections and range in severity of illness.


Subject(s)
Autoantibodies , COVID-19 , Humans , Autoantigens , Critical Illness , Cytokines , SARS-CoV-2
6.
J Allergy Clin Immunol ; 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2235736

ABSTRACT

BACKGROUND: The global epidemiology of asthma among patients with coronavirus disease 2019 (COVID-19) presents striking geographic differences, defining prevalence zones of high and low co-occurrence of asthma and COVID-19. OBJECTIVE: We aimed to compare asthma prevalence among hospitalized patients with COVID-19 in major global hubs across the world by applying common inclusion criteria and definitions. METHODS: We built a network of 6 academic hospitals in Stanford (Stanford University)/the United States; Frankfurt (Goethe University), Giessen (Justus Liebig University), and Marburg (Philipps University)/Germany; and Moscow (Clinical Hospital 52 in collaboration with Sechenov University)/Russia. We collected clinical and laboratory data for patients hospitalized due to COVID-19. RESULTS: Asthmatic individuals were overrepresented among hospitalized patients with COVID-19 in Stanford and underrepresented in Moscow and Germany as compared with their prevalence among adults in the local community. Asthma prevalence was similar among patients hospitalized in an intensive care unit and patients hospitalized in other than an intensive care unit, which implied that the risk for development of severe COVID-19 was not higher among asthmatic patients. The numbers of males and comorbidities were higher among patients with COVID-19 in the Stanford cohort, and the most frequent comorbidities among these patients with asthma were other chronic inflammatory airway disorders such as chronic obstructive pulmonary disease. CONCLUSION: The observed disparity in COVID-19-associated risk among asthmatic patients across countries and continents is connected to the varying prevalence of underlying comorbidities, particularly chronic obstructive pulmonary disease.

7.
Front Immunol ; 13: 1023903, 2022.
Article in English | MEDLINE | ID: covidwho-2119689

ABSTRACT

Vitamin D supplementation and its impact on immunoregulation are widely investigated. We aimed to assess the prevention and treatment efficiency of vitamin D supplementation in the context of coronavirus disease 2019 (COVID-19) and any disease-related complications. For this systematic review and meta-analysis, we searched databases (PubMed, Embase, Scopus, Web of Science, The Cochrane Library, medRxiv, Cochrane COVID-19 Study Register, and ClinicalTrial.gov) for studies published between 1 November 2019 and 17 September 2021. We considered randomized trials (RCTs) as potentially eligible when patients were tested for SARS-CoV-2 infection and received vitamin D supplementation versus a placebo or standard-of-care control. A random-effects model was implemented to obtain pooled odds ratios for the effect of vitamin D supplementation on the main outcome of mortality as well as clinical outcomes. We identified a total of 5,733 articles, of which eight RCTs (657 patients) met the eligibility criteria. Although no statistically significant effects were reached, the use of vitamin D supplementation showed a trend for reduced mortality [odds ratio (OR) 0.74, 95% confidence interval (CI) 0.32-1.71, p = 0.48] compared with the control group, with even stronger effects, when vitamin D was administered repeatedly (OR 0.33, 95% CI 0.1-1.14). The mean difference for the length of hospitalization was -0.28 (95% CI -0.60 to 0.04), and the ORs were 0.41 (95% CI 0.15-1.12) and 0.52 (95% CI 0.27-1.02) for ICU admission and mechanical ventilation, respectively. In conclusion, vitamin D supplementation did not improve the clinical outcomes in COVID-19 patients, but trends of beneficial effects were observed. Further investigations are required, especially studies focusing on the daily administration of vitamin D.


Subject(s)
COVID-19 Drug Treatment , Humans , Dietary Supplements , SARS-CoV-2 , Randomized Controlled Trials as Topic , Vitamin D/therapeutic use , Vitamins/therapeutic use
8.
Allergol Int ; 71(3): 310-317, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1926162

ABSTRACT

In October 2021, researchers from the German Society of Allergy and Clinical Immunology (DGAKI) and from the Japanese Society of Allergology (JSA) focused their attention on the pathological conditions and modifiers of various allergic diseases. Topics included 1) the pathophysiology of IgE/mast cell-mediated allergic diseases; 2) the diagnosis and prevention of IgE/mast cell-mediated diseases; 3) the pathophysiology, diagnosis, and treatment of eosinophilic airway diseases; and 4) host-pathogen interaction and allergic diseases. This report summarizes the panel discussions, which highlighted the importance of recognizing the diversity of genetics, immunological mechanisms, and modifying factors underlying allergic diseases.


Subject(s)
Hypersensitivity , Immunoglobulin E , Humans , Hypersensitivity/drug therapy , Hypersensitivity/therapy
9.
BMJ Open ; 12(6): e058274, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1902004

ABSTRACT

OBJECTIVES: We investigated machinelearningbased identification of presymptomatic COVID-19 and detection of infection-related changes in physiology using a wearable device. DESIGN: Interim analysis of a prospective cohort study. SETTING, PARTICIPANTS AND INTERVENTIONS: Participants from a national cohort study in Liechtenstein were included. Nightly they wore the Ava-bracelet that measured respiratory rate (RR), heart rate (HR), HR variability (HRV), wrist-skin temperature (WST) and skin perfusion. SARS-CoV-2 infection was diagnosed by molecular and/or serological assays. RESULTS: A total of 1.5 million hours of physiological data were recorded from 1163 participants (mean age 44±5.5 years). COVID-19 was confirmed in 127 participants of which, 66 (52%) had worn their device from baseline to symptom onset (SO) and were included in this analysis. Multi-level modelling revealed significant changes in five (RR, HR, HRV, HRV ratio and WST) device-measured physiological parameters during the incubation, presymptomatic, symptomatic and recovery periods of COVID-19 compared with baseline. The training set represented an 8-day long instance extracted from day 10 to day 2 before SO. The training set consisted of 40 days measurements from 66 participants. Based on a random split, the test set included 30% of participants and 70% were selected for the training set. The developed long short-term memory (LSTM) based recurrent neural network (RNN) algorithm had a recall (sensitivity) of 0.73 in the training set and 0.68 in the testing set when detecting COVID-19 up to 2 days prior to SO. CONCLUSION: Wearable sensor technology can enable COVID-19 detection during the presymptomatic period. Our proposed RNN algorithm identified 68% of COVID-19 positive participants 2 days prior to SO and will be further trained and validated in a randomised, single-blinded, two-period, two-sequence crossover trial. Trial registration number ISRCTN51255782; Pre-results.


Subject(s)
COVID-19 , Adult , COVID-19/diagnosis , Cohort Studies , Humans , Middle Aged , Prospective Studies , SARS-CoV-2
10.
Crit Rev Clin Lab Sci ; 59(7): 445-459, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1740611

ABSTRACT

A plethora of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic tests are available, each with different performance specifications, detection methods, and targets. This narrative review aims to summarize the diagnostic technologies available and how they are best selected to tackle SARS-CoV-2 infection as the pandemic evolves. Seven key settings have been identified where diagnostic tests are being deployed: symptomatic individuals presenting for diagnostic testing and/or treatment of COVID-19 symptoms; asymptomatic individuals accessing healthcare for planned non-COVID-19-related reasons; patients needing to access emergency care (symptom status unknown); patients being discharged from healthcare following hospitalization for COVID-19; healthy individuals in both single event settings (e.g. airports, restaurants, hotels, concerts, and sporting events) and repeat access settings (e.g. workplaces, schools, and universities); and vaccinated individuals. While molecular diagnostics remain central to SARS-CoV-2 testing strategies, we have offered some discussion on the considerations for when other tools and technologies may be useful, when centralized/point-of-care testing is appropriate, and how the various additional diagnostics can be deployed in differently resourced settings. As the pandemic evolves, molecular testing remains important for definitive diagnosis, but increasingly widespread point-of-care testing is essential to the re-opening of society.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Testing , COVID-19/diagnosis , Pandemics , Point-of-Care Testing , Sensitivity and Specificity
11.
Nat Commun ; 12(1): 5417, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1410404

ABSTRACT

COVID-19 is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. Here we develop three protein arrays to measure IgG autoantibodies associated with connective tissue diseases, anti-cytokine antibodies, and anti-viral antibody responses in serum from 147 hospitalized COVID-19 patients. Autoantibodies are identified in approximately 50% of patients but in less than 15% of healthy controls. When present, autoantibodies largely target autoantigens associated with rare disorders such as myositis, systemic sclerosis and overlap syndromes. A subset of autoantibodies targeting traditional autoantigens or cytokines develop de novo following SARS-CoV-2 infection. Autoantibodies track with longitudinal development of IgG antibodies recognizing SARS-CoV-2 structural proteins and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Aged , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoantibodies/blood , Autoantigens/immunology , Connective Tissue Diseases/immunology , Cytokines/immunology , Female , Hospitalization , Humans , Immunoglobulin G/blood , Male , Middle Aged , SARS-CoV-2/pathogenicity , Viral Proteins/immunology
14.
J Allergy Clin Immunol ; 148(3): 679-688, 2021 09.
Article in English | MEDLINE | ID: covidwho-1322161

ABSTRACT

In addition to being a source of nutrients for the developing newborn, human milk contains thousands of bioactive compounds, which influence infant health in the short-term as exemplified by its major benefits on infectious disease prevention. Many of the human milk compounds also have the required characteristics to instruct immune development and guide long-term health. Prebiotics, probiotics, and varied antimicrobial molecules all have the potential to shape the composition and function of the establishing gut microbiota, which is known to be a major determinant of immune function. Another and less explored way human milk can instruct long-term immunity is through antigen shedding. Here, we will review the evidence that antigens from maternal environment and more specifically from allergen sources are found in human milk. We will discuss data from rodent models and birth cohorts showing that allergen shedding in breast milk may influence long-term allergy risk. We will uncover the variables that may underlie heterogeneity in oral tolerance induction and allergy prevention in children breast-fed by allergen-exposed mothers. We will focus on the parameters that control antigen transfer to breast milk, on the unique biological characteristics of allergens in breast milk, and on the milk bioactive compounds that were found to influence immune response in offspring. We propose this understanding is fundamental to guide maternal interventions leading to lifelong allergen tolerance.


Subject(s)
Allergens/immunology , Hypersensitivity/prevention & control , Milk, Human/immunology , Animals , Female , Humans , Hypersensitivity/epidemiology , Immune System , Immune Tolerance , Risk
15.
J Allergy Clin Immunol ; 148(3): 843-857.e6, 2021 09.
Article in English | MEDLINE | ID: covidwho-1213300

ABSTRACT

BACKGROUND: Prenatal exposure to infections can modify immune development. These environmental disturbances during early life potentially alter the incidence of inflammatory disorders as well as priming of immune responses. Infection with the helminth Schistosoma mansoni is widely studied for its ability to alter immune responsiveness and is associated with variations in coinfection, allergy, and vaccine efficacy in endemic populations. OBJECTIVE: Exposure to maternal schistosomiasis during early life, even without transmission of infection, can result in priming effects on offspring immune responses to bystander antigenic challenges as related to allergic responsiveness and vaccination, with this article seeking to further clarify the effects and underlying immunologic imprinting. METHODS: Here, we have combined a model of chronic maternal schistosomiasis infection with a thorough analysis of subsequent offspring immune responses to allergy and vaccination models, including viral challenge and steady-state changes to immune cell compartments. RESULTS: We have demonstrated that maternal schistosomiasis alters CD4+ responses during allergic sensitization and challenge in a skewed IL-4/B-cell-dominant response to antigenic challenge associated with limited inflammatory response. Beyond that, we have uncovered previously unidentified alterations to CD8+ T-cell responses during immunization that are dependent on vaccine formulation and have functional impact on the efficacy of vaccination against viral infection in a murine hepatitis B virus model. CONCLUSION: In addition to steady-state modifications to CD4+ T-cell polarization and B-cell priming, we have traced these modified CD8+ responses to an altered dendritic cell phenotype sustained into adulthood, providing evidence for complex priming effects imparted by infection via fetomaternal cross talk.


Subject(s)
Prenatal Exposure Delayed Effects/immunology , Respiratory Hypersensitivity/immunology , Schistosomiasis/immunology , Allergens/immunology , Animals , B-Lymphocytes/immunology , Cells, Cultured , Dendritic Cells/immunology , Female , Fetus/immunology , Gene Expression Profiling , Immunization , Lung/immunology , Lymph Nodes/immunology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Ovalbumin/immunology , Pregnancy , Respiratory Hypersensitivity/genetics , Schistosoma mansoni , Spleen/immunology , T-Lymphocytes/immunology
16.
Sci Rep ; 11(1): 4792, 2021 02 26.
Article in English | MEDLINE | ID: covidwho-1104550

ABSTRACT

The outbreak of the new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a public health emergency. Asthma does not represent a risk factor for COVID-19 in several published cohorts. We hypothesized that the SARS-CoV-2 proteome contains T cell epitopes, which are potentially cross-reactive to allergen epitopes. We aimed at identifying homologous peptide sequences by means of two distinct complementary bioinformatics approaches. Pipeline 1 included prediction of MHC Class I and Class II epitopes contained in the SARS-CoV-2 proteome and allergens along with alignment and elaborate ranking approaches. Pipeline 2 involved alignment of SARS-CoV-2 overlapping peptides with known allergen-derived T cell epitopes. Our results indicate a large number of MHC Class I epitope pairs including known as well as de novo predicted allergen T cell epitopes with high probability for cross-reactivity. Allergen sources, such as Aspergillus fumigatus, Phleum pratense and Dermatophagoides species are of particular interest due to their association with multiple cross-reactive candidate peptides, independently of the applied bioinformatic approach. In contrast, peptides derived from food allergens, as well as MHC class II epitopes did not achieve high in silico ranking and were therefore not further investigated. Our findings warrant further experimental confirmation along with examination of the functional importance of such cross-reactive responses.


Subject(s)
Allergens/immunology , COVID-19/immunology , Immunity, Heterologous , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Asthma/immunology , Computational Biology , Epitopes, T-Lymphocyte/immunology , HLA Antigens/immunology , Humans , Immunity, Cellular , Viral Proteins/immunology
18.
Dis Markers ; 2021: 8810196, 2021.
Article in English | MEDLINE | ID: covidwho-1039930

ABSTRACT

Several tests based on chemiluminescence immunoassay techniques have become available to test for SARS-CoV-2 antibodies. There is currently insufficient data on serology assay performance beyond 35 days after symptoms onset. We aimed to evaluate SARS-CoV-2 antibody tests on three widely used platforms. A chemiluminescent microparticle immunoassay (CMIA; Abbott Diagnostics, USA), a luminescence immunoassay (LIA; Diasorin, Italy), and an electrochemiluminescence immunoassay (ECLIA; Roche Diagnostics, Switzerland) were investigated. In a multigroup study, sensitivity was assessed in a group of participants with confirmed SARS-CoV-2 (n = 145), whereas specificity was determined in two groups of participants without evidence of COVID-19 (i.e., healthy blood donors, n = 191, and healthcare workers, n = 1002). Receiver operating characteristic (ROC) curves, multilevel likelihood ratios (LR), and positive (PPV) and negative (NPV) predictive values were characterized. Finally, analytical specificity was characterized in samples with evidence of the Epstein-Barr virus (EBV) (n = 9), cytomegalovirus (CMV) (n = 7), and endemic common-cold coronavirus infections (n = 12) taken prior to the current SARS-CoV-2 pandemic. The diagnostic accuracy was comparable in all three assays (AUC 0.98). Using the manufacturers' cut-offs, the sensitivities were 90%, 95% confidence interval [84,94] (LIA), 93% [88,96] (CMIA), and 96% [91,98] (ECLIA). The specificities were 99.5% [98.9,99.8] (CMIA), 99.7% [99.3,99.9] (LIA), and 99.9% [99.5,99.98] (ECLIA). The LR at half of the manufacturers' cut-offs were 60 (CMIA), 82 (LIA), and 575 (ECLIA) for positive and 0.043 (CMIA) and 0.035 (LIA, ECLIA) for negative results. ECLIA had higher PPV at low pretest probabilities than CMIA and LIA. No interference with EBV or CMV infection was observed, whereas endemic coronavirus in some cases provided signals in LIA and/or CMIA. Although the diagnostic accuracy of the three investigated assays is comparable, their performance in low-prevalence settings is different. Introducing gray zones at half of the manufacturers' cut-offs is suggested, especially for orthogonal testing approaches that use a second assay for confirmation.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Luminescent Measurements/methods , SARS-CoV-2/immunology , Adult , COVID-19 Testing , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Sensitivity and Specificity
19.
Allergol Select ; 5: 1-25, 2021.
Article in English | MEDLINE | ID: covidwho-1022168

ABSTRACT

With the advent of biologicals, more and more therapeutics are available that specifically address specific switch points in the pathomechanism of immunologically dominated diseases. Thus, the focus of diagnostics and therapy (precision medicine) is more on the individual disease characteristics of the individual patient. Regarding the different phenotypes of atopic diseases, severe asthma was the first entity for which biologicals were approved, followed by urticaria, and finally atopic dermatitis and chronic rhinosinusitis with nasal polyps. Experience in the treatment of severe bronchial asthma has shown that the intensity of the response to biological therapy depends on the quality of clinical and immunological phenotyping of the patients. This also applies to different diseases of the atopic form, as patients can suffer from several atopic diseases at the same time, each with different characteristics. Biologics are already emerging that may represent a suitable therapy for allergic bronchial asthma, which often occurs together with severe neurodermatitis, and chronic rhinosinusitis with nasal polyps. In practice, however, the question of possible combinations of biologicals for the therapy of complex clinical pictures of individual patients is increasingly arising. In doing so, the side effect profile must be taken into account, including hypersensitivity reactions, whose diagnostic and logistical management must aim at a safe and efficient therapy of the underlying disease. Increased attention must also be paid to biological therapy in pregnancy and planned (predictable) vaccinations as well as existing infections, such as SARS-CoV-2 infection. Before starting a biological therapy, the immune status should be checked with regard to chronic viral and bacterial infections and, if necessary, the vaccination status should be refreshed or missing vaccinations should be made up for before starting therapy. Currently, reliable data on the effect of biologicals on the immunological situation of SARS-CoV-2 infection and COVID-19 are not available. Therefore, research and development of suitable diagnostic methods for detection of immunologically caused side effects as well as detection of potential therapy responders and non-responders is of great importance.

20.
J Clin Med ; 9(12)2020 Dec 09.
Article in English | MEDLINE | ID: covidwho-969190

ABSTRACT

Pan-immunoglobulin assays can simultaneously detect IgG, IgM and IgA directed against the receptor binding domain (RBD) of the S1 subunit of the spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 S1-RBD Ig). In this work, we aim to evaluate a quantitative SARS-CoV-2 S1-RBD Ig electrochemiluminescence immunoassay (ECLIA) regarding analytical, diagnostic, operational and clinical characteristics. Our work takes the form of a population-based study in the principality of Liechtenstein, including 125 cases with clinically well-described and laboratory confirmed SARS-CoV-2 infection and 1159 individuals without evidence of coronavirus disease 2019 (COVID-19). SARS-CoV-2 cases were tested for antibodies in sera taken with a median of 48 days (interquartile range, IQR, 43-52) and 139 days (IQR, 129-144) after symptom onset. Sera were also tested with other assays targeting antibodies against non-RBD-S1 and -S1/S2 epitopes. Sensitivity was 97.6% (95% confidence interval, CI, 93.2-99.1), whereas specificity was 99.8% (95% CI, 99.4-99.9). Antibody levels linearly decreased from hospitalized patients to symptomatic outpatients and SARS-CoV-2 infection without symptoms (p < 0.001). Among cases with SARS-CoV-2 infection, smokers had lower antibody levels than non-smokers (p = 0.04), and patients with fever had higher antibody levels than patients without fever (p = 0.001). Pan-SARS-CoV-2 S1-RBD Ig in SARS-CoV-2 infection cases significantly increased from first to second follow-up (p < 0.001). A substantial proportion of individuals without evidence of past SARS-CoV-2 infection displayed non-S1-RBD antibody reactivities (248/1159, i.e., 21.4%, 95% CI, 19.1-23.4). In conclusion, a quantitative SARS-CoV-2 S1-RBD Ig assay offers favorable and sustained assay characteristics allowing the determination of quantitative associations between clinical characteristics (e.g., disease severity, smoking or fever) and antibody levels. The assay could also help to identify individuals with antibodies of non-S1-RBD specificity with potential clinical cross-reactivity to SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL