Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Ann Intensive Care ; 11(1): 159, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1538089

ABSTRACT

BACKGROUND: Some unanswered questions persist regarding the effectiveness of corticosteroids for severe coronavirus disease 2019 (COVID-19) patients. We aimed to assess the clinical effect of corticosteroids on intensive care unit (ICU) mortality among mechanically ventilated COVID-19-associated acute respiratory distress syndrome (ARDS) patients. METHODS: This was a retrospective study of prospectively collected data conducted in 70 ICUs (68 Spanish, one Andorran, one Irish), including mechanically ventilated COVID-19-associated ARDS patients admitted between February 6 and September 20, 2020. Individuals who received corticosteroids for refractory shock were excluded. Patients exposed to corticosteroids at admission were matched with patients without corticosteroids through propensity score matching. Primary outcome was all-cause ICU mortality. Secondary outcomes were to compare in-hospital mortality, ventilator-free days at 28 days, respiratory superinfection and length of stay between patients with corticosteroids and those without corticosteroids. We performed survival analysis accounting for competing risks and subgroup sensitivity analysis. RESULTS: We included 1835 mechanically ventilated COVID-19-associated ARDS, of whom 1117 (60.9%) received corticosteroids. After propensity score matching, ICU mortality did not differ between patients treated with corticosteroids and untreated patients (33.8% vs. 30.9%; p = 0.28). In survival analysis, corticosteroid treatment at ICU admission was associated with short-term survival benefit (HR 0.53; 95% CI 0.39-0.72), although beyond the 17th day of admission, this effect switched and there was an increased ICU mortality (long-term HR 1.68; 95% CI 1.16-2.45). The sensitivity analysis reinforced the results. Subgroups of age < 60 years, severe ARDS and corticosteroids plus tocilizumab could have greatest benefit from corticosteroids as short-term decreased ICU mortality without long-term negative effects were observed. Larger length of stay was observed with corticosteroids among non-survivors both in the ICU and in hospital. There were no significant differences for the remaining secondary outcomes. CONCLUSIONS: Our results suggest that corticosteroid treatment for mechanically ventilated COVID-19-associated ARDS had a biphasic time-dependent effect on ICU mortality. Specific subgroups showed clear effect on improving survival with corticosteroid use. Therefore, further research is required to identify treatment-responsive subgroups among the mechanically ventilated COVID-19-associated ARDS patients.

2.
J Allergy Clin Immunol ; 148(5): 1176-1191, 2021 11.
Article in English | MEDLINE | ID: covidwho-1401557

ABSTRACT

BACKGROUND: The risk of severe coronavirus disease 2019 (COVID-19) varies significantly among persons of similar age and is higher in males. Age-independent, sex-biased differences in susceptibility to severe COVID-19 may be ascribable to deficits in a sexually dimorphic protective attribute that we termed immunologic resilience (IR). OBJECTIVE: We sought to examine whether deficits in IR that antedate or are induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection independently predict COVID-19 mortality. METHODS: IR levels were quantified with 2 novel metrics: immune health grades (IHG-I [best] to IHG-IV) to gauge CD8+ and CD4+ T-cell count equilibrium, and blood gene expression signatures. IR metrics were examined in a prospective COVID-19 cohort (n = 522); primary outcome was 30-day mortality. Associations of IR metrics with outcomes in non-COVID-19 cohorts (n = 13,461) provided the framework for linking pre-COVID-19 IR status to IR during COVID-19, as well as to COVID-19 outcomes. RESULTS: IHG-I, tracking high-grade equilibrium between CD8+ and CD4+ T-cell counts, was the most common grade (73%) among healthy adults, particularly in females. SARS-CoV-2 infection was associated with underrepresentation of IHG-I (21%) versus overrepresentation (77%) of IHG-II or IHG-IV, especially in males versus females (P < .01). Presentation with IHG-I was associated with 88% lower mortality, after controlling for age and sex; reduced risk of hospitalization and respiratory failure; lower plasma IL-6 levels; rapid clearance of nasopharyngeal SARS-CoV-2 burden; and gene expression signatures correlating with survival that signify immunocompetence and controlled inflammation. In non-COVID-19 cohorts, IR-preserving metrics were associated with resistance to progressive influenza or HIV infection, as well as lower 9-year mortality in the Framingham Heart Study, especially in females. CONCLUSIONS: Preservation of immunocompetence with controlled inflammation during antigenic challenges is a hallmark of IR and associates with longevity and AIDS resistance. Independent of age, a male-biased proclivity to degrade IR before and/or during SARS-CoV-2 infection predisposes to severe COVID-19.


Subject(s)
COVID-19/immunology , HIV Infections/epidemiology , HIV-1/physiology , Respiratory Insufficiency/epidemiology , SARS-CoV-2/physiology , Sex Factors , T-Lymphocytes/immunology , Adult , Aged , COVID-19/epidemiology , COVID-19/mortality , Cohort Studies , Disease Resistance , Female , Humans , Immunocompetence , Interleukin-6/blood , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Severity of Illness Index , Survival Analysis , Transcriptome/immunology , United States/epidemiology , Viral Load
3.
Ultrasound J ; 13(1): 39, 2021 Sep 06.
Article in English | MEDLINE | ID: covidwho-1394444

ABSTRACT

BACKGROUND: Lack of training is currently the most common barrier to implementation of point-of-care ultrasound (POCUS) use in clinical practice, and in-person POCUS continuing medical education (CME) courses have been paramount in improving this training gap. Due to travel restrictions and physical distancing requirements during the COVID-19 pandemic, most in-person POCUS training courses were cancelled. Though tele-ultrasound technology has existed for several years, use of tele-ultrasound technology to deliver hands-on training during a POCUS CME course has not been previously described. METHODS: We conducted a retrospective observational study comparing educational outcomes, course evaluations, and learner and faculty feedback from in-person versus tele-ultrasound POCUS courses. The same POCUS educational curriculum was delivered to learners by the two course formats. Data from the most recent pre-pandemic in-person course were compared to tele-ultrasound courses during the COVID-19 pandemic. RESULTS: Pre- and post-course knowledge test scores of learners from the in-person (n = 88) and tele-ultrasound course (n = 52) were compared. Though mean pre-course knowledge test scores were higher among learners of the tele-ultrasound versus in-person course (78% vs. 71%; p = 0.001), there was no significant difference in the post-course test scores between learners of the two course formats (89% vs. 87%; p = 0.069). Both learners and faculty rated the tele-ultrasound course highly (4.6-5.0 on a 5-point scale) for effectiveness of virtual lectures, tele-ultrasound hands-on scanning sessions, and course administration. Faculty generally expressed less satisfaction with their ability to engage with learners, troubleshoot image acquisition, and provide feedback during the tele-ultrasound course but felt learners completed the tele-ultrasound course with a better basic POCUS skillset. CONCLUSIONS: Compared to a traditional in-person course, tele-ultrasound POCUS CME courses appeared to be as effective for improving POCUS knowledge post-course and fulfilling learning objectives. Our findings can serve as a roadmap for educators seeking guidance on development of a tele-ultrasound POCUS training course whose demand will likely persist beyond the COVID-19 pandemic.

4.
Am J Respir Crit Care Med ; 203(9): 1070-1087, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1223640

ABSTRACT

Background: This document provides evidence-based clinical practice guidelines on the diagnostic utility of nucleic acid-based testing of respiratory samples for viral pathogens other than influenza in adults with suspected community-acquired pneumonia (CAP).Methods: A multidisciplinary panel developed a Population-Intervention-Comparison-Outcome question, conducted a pragmatic systematic review, and applied Grading of Recommendations, Assessment, Development, and Evaluation methodology for clinical recommendations.Results: The panel evaluated the literature to develop recommendations regarding whether routine diagnostics should include nucleic acid-based testing of respiratory samples for viral pathogens other than influenza in suspected CAP. The evidence addressing this topic was generally adjudicated to be of very low quality because of risk of bias and imprecision. Furthermore, there was little direct evidence supporting a role for routine nucleic acid-based testing of respiratory samples in improving critical outcomes such as overall survival or antibiotic use patterns. However, on the basis of direct and indirect evidence, recommendations were made for both outpatient and hospitalized patients with suspected CAP. Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was not addressed in the literature at the time of the evidence review.Conclusions: The panel formulated and provided their rationale for recommendations on nucleic acid-based diagnostics for viral pathogens other than influenza for patients with suspected CAP.


Subject(s)
Community-Acquired Infections/virology , DNA, Viral/analysis , Pneumonia/virology , Societies, Medical , Viruses/genetics , Community-Acquired Infections/diagnosis , Humans , Pneumonia/diagnosis
5.
Int J Mol Sci ; 22(9)2021 Apr 30.
Article in English | MEDLINE | ID: covidwho-1217090

ABSTRACT

The clinical evolution of COVID-19 pneumonia is poorly understood. Identifying the metabolic pathways that are altered early with viral infection and their association with disease severity is crucial to understand COVID-19 pathophysiology, and guide clinical decisions. This study aimed at assessing the critical metabolic pathways altered with disease severity in hospitalized COVID-19 patients. Forty-nine hospitalized patients with COVID-19 pneumonia were enrolled in a prospective, observational, single-center study in Barcelona, Spain. Demographic, clinical, and analytical data at admission were registered. Plasma samples were collected within the first 48 h following hospitalization. Patients were stratified based on the severity of their evolution as moderate (N = 13), severe (N = 10), or critical (N = 26). A panel of 221 biomarkers was measured by targeted metabolomics in order to evaluate metabolic changes associated with subsequent disease severity. Our results show that obesity, respiratory rate, blood pressure, and oxygen saturation, as well as some analytical parameters and radiological findings, were all associated with disease severity. Additionally, ceramide metabolism, tryptophan degradation, and reductions in several metabolic reactions involving nicotinamide adenine nucleotide (NAD) at inclusion were significantly associated with respiratory severity and correlated with inflammation. In summary, assessment of the metabolomic profile of COVID-19 patients could assist in disease severity stratification and even in guiding clinical decisions.


Subject(s)
COVID-19/metabolism , Metabolome , SARS-CoV-2/physiology , Adult , Aged , Biomarkers/blood , Biomarkers/metabolism , COVID-19/blood , COVID-19/pathology , Ceramides/blood , Ceramides/metabolism , Female , Hospitalization , Humans , Kynurenine/blood , Kynurenine/metabolism , Male , Metabolomics , Middle Aged , Prospective Studies , Severity of Illness Index , Tryptophan/blood , Tryptophan/metabolism
6.
Diagnostics (Basel) ; 11(2)2021 Feb 22.
Article in English | MEDLINE | ID: covidwho-1100094

ABSTRACT

Point-of-care lung ultrasound (LUS) is an attractive alternative to chest X-ray (CXR), but its diagnostic accuracy compared to CXR has not been well studied in coronavirus disease 2019 (COVID-19) patients. We conducted a prospective observational study to assess the correlation between LUS and CXR findings in COVID-19 patients. Ninety-six patients with a clinical diagnosis of COVID-19 underwent an LUS exam and CXR upon presentation. Physicians blinded to the CXR findings performed all LUS exams. Detection of pulmonary infiltrates by CXR versus LUS was compared between patients categorized as suspected or confirmed COVID-19 based on reverse transcriptase-polymerase chain reaction. Sensitivities and correlation by Kappa statistic were calculated between LUS and CXR. LUS detected pulmonary infiltrates more often than CXR in both suspected and confirmed COVID-19 subjects. The most common LUS abnormalities were discrete B-lines, confluent B-lines, and small subpleural consolidations. Most important, LUS detected unilateral or bilateral pulmonary infiltrates in 55% of subjects with a normal CXR. Substantial agreement was demonstrated between LUS and CXR for normal, unilateral or bilateral findings (Κ = 0.48 (95% CI 0.34 to 0.63)). In patients with suspected or confirmed COVID-19, LUS detected pulmonary infiltrates more often than CXR, including more than half of the patients with a normal CXR.

SELECTION OF CITATIONS
SEARCH DETAIL