Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Chest ; 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1914240

ABSTRACT

BACKGROUND: Convalescent plasma has been one of the most common treatments for COVID-19, but most clinical trial data to date have not supported its efficacy. RESEARCH QUESTION: Is rigorously selected COVID-19 convalescent plasma with neutralizing anti-SARS-CoV-2 antibodies an efficacious treatment for adults hospitalized with COVID-19? STUDY DESIGN AND METHODS: This was a multicenter, blinded, placebo-controlled randomized clinical trial among adults hospitalized with SARS-CoV-2 infection and acute respiratory symptoms for < 14 days. Enrolled patients were randomly assigned to receive one unit of COVID-19 convalescent plasma (n = 487) or placebo (n = 473). The primary outcome was clinical status (illness severity) 14 days following study infusion measured with a seven-category ordinal scale ranging from discharged from the hospital with resumption of normal activities (lowest score) to death (highest score). The primary outcome was analyzed with a multivariable ordinal regression model, with an adjusted odds ratio (aOR) < 1.0 indicating more favorable outcomes with convalescent plasma than with placebo. In secondary analyses, trial participants were stratified according to the presence of endogenous anti-SARS-CoV-2 antibodies ("serostatus") at randomization. The trial included 13 secondary efficacy outcomes, including 28-day mortality. RESULTS: Among 974 randomized patients, 960 were included in the primary analysis. Clinical status on the ordinal outcome scale at 14 days did not differ between the convalescent plasma and placebo groups in the overall population (aOR, 1.04; one-seventh SI [1/7 SI], 0.82-1.33), in patients without endogenous antibodies (aOR, 1.15; 1/7 SI, 0.74-1.80), or in patients with endogenous antibodies (aOR, 0.96; 1/7 SI, 0.72-1.30). None of the 13 secondary efficacy outcomes were different between groups. At 28 days, 89 of 482 (18.5%) patients in the convalescent plasma group and 80 of 465 (17.2%) patients in the placebo group had died (aOR, 1.04; 1/7 SI, 0.69-1.58). INTERPRETATION: Among adults hospitalized with COVID-19, including those seronegative for anti-SARS-CoV-2 antibodies, treatment with convalescent plasma did not improve clinical outcomes. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT04362176; URL: www. CLINICALTRIALS: gov.

2.
Clin Infect Dis ; 2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-1890901

ABSTRACT

BACKGROUND: Adults in the United States (US) began receiving the viral vector COVID-19 vaccine, Ad26.COV2.S (Johnson & Johnson [Janssen]), in February 2021. We evaluated Ad26.COV2.S vaccine effectiveness (VE) against COVID-19 hospitalization and high disease severity during the first 10 months of its use. METHODS: In a multicenter case-control analysis of US adults (≥18 years) hospitalized March 11-December 15, 2021, we estimated VE against susceptibility to COVID-19 hospitalization (VEs), comparing odds of prior vaccination with a single dose Ad26.COV2.S vaccine between hospitalized cases with COVID-19 and controls without COVID-19. Among hospitalized patients with COVID-19, we estimated VE against disease progression (VEp) to death or invasive mechanical ventilation (IMV), comparing odds of prior vaccination between patients with and without progression. RESULTS: After excluding patients receiving mRNA vaccines, among 3,979 COVID-19 case-patients (5% vaccinated with Ad26.COV2.S) and 2.229 controls (13% vaccinated with Ad26.COV2.S), VEs of Ad26.COV2.S against COVID-19 hospitalization was 70% (95% CI: 63%-75%) overall, including 55% (29%-72%) among immunocompromised patients, and 72% (64%-77%) among immunocompetent patients, for whom VEs was similar at 14-90 days (73% [59%-82%]), 91-180 days (71% [60%-80%]), and 181-274 days (70% [54%-81%]) post-vaccination. Among hospitalized COVID-19 case-patients, VEp was 46% (18%-65%) among immunocompetent patients. CONCLUSIONS: The Ad26.COV2.S COVID-19 vaccine reduced the risk of COVID-19 hospitalization by 72% among immunocompetent adults without waning through 6 months post-vaccination. After hospitalization for COVID-19, vaccinated immunocompetent patients were less likely to require IMV or die compared to unvaccinated immunocompetent patients.

3.
MMWR Morb Mortal Wkly Rep ; 71(12): 459-465, 2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1761302

ABSTRACT

COVID-19 mRNA vaccines (BNT162b2 [Pfizer-BioNTech] and mRNA-1273 [Moderna]) are effective at preventing COVID-19-associated hospitalization (1-3). However, how well mRNA vaccines protect against the most severe outcomes of these hospitalizations, including invasive mechanical ventilation (IMV) or death is uncertain. Using a case-control design, mRNA vaccine effectiveness (VE) against COVID-19-associated IMV and in-hospital death was evaluated among adults aged ≥18 years hospitalized at 21 U.S. medical centers during March 11, 2021-January 24, 2022. During this period, the most commonly circulating variants of SARS-CoV-2, the virus that causes COVID-19, were B.1.1.7 (Alpha), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Previous vaccination (2 or 3 versus 0 vaccine doses before illness onset) in prospectively enrolled COVID-19 case-patients who received IMV or died within 28 days of hospitalization was compared with that among hospitalized control patients without COVID-19. Among 1,440 COVID-19 case-patients who received IMV or died, 307 (21%) had received 2 or 3 vaccine doses before illness onset. Among 6,104 control-patients, 4,020 (66%) had received 2 or 3 vaccine doses. Among the 1,440 case-patients who received IMV or died, those who were vaccinated were older (median age = 69 years), more likely to be immunocompromised* (40%), and had more chronic medical conditions compared with unvaccinated case-patients (median age = 55 years; immunocompromised = 10%; p<0.001 for both). VE against IMV or in-hospital death was 90% (95% CI = 88%-91%) overall, including 88% (95% CI = 86%-90%) for 2 doses and 94% (95% CI = 91%-96%) for 3 doses, and 94% (95% CI = 88%-97%) for 3 doses during the Omicron-predominant period. COVID-19 mRNA vaccines are highly effective in preventing COVID-19-associated death and respiratory failure treated with IMV. CDC recommends that all persons eligible for vaccination get vaccinated and stay up to date with COVID-19 vaccination (4).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/prevention & control , Respiration, Artificial , Vaccine Efficacy , COVID-19/mortality , Hospital Mortality , Humans , United States/epidemiology
4.
BMJ ; 376: e069761, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1736045

ABSTRACT

OBJECTIVES: To characterize the clinical severity of covid-19 associated with the alpha, delta, and omicron SARS-CoV-2 variants among adults admitted to hospital and to compare the effectiveness of mRNA vaccines to prevent hospital admissions related to each variant. DESIGN: Case-control study. SETTING: 21 hospitals across the United States. PARTICIPANTS: 11 690 adults (≥18 years) admitted to hospital: 5728 with covid-19 (cases) and 5962 without covid-19 (controls). Patients were classified into SARS-CoV-2 variant groups based on viral whole genome sequencing, and, if sequencing did not reveal a lineage, by the predominant circulating variant at the time of hospital admission: alpha (11 March to 3 July 2021), delta (4 July to 25 December 2021), and omicron (26 December 2021 to 14 January 2022). MAIN OUTCOME MEASURES: Vaccine effectiveness calculated using a test negative design for mRNA vaccines to prevent covid-19 related hospital admissions by each variant (alpha, delta, omicron). Among patients admitted to hospital with covid-19, disease severity on the World Health Organization's clinical progression scale was compared among variants using proportional odds regression. RESULTS: Effectiveness of the mRNA vaccines to prevent covid-19 associated hospital admissions was 85% (95% confidence interval 82% to 88%) for two vaccine doses against the alpha variant, 85% (83% to 87%) for two doses against the delta variant, 94% (92% to 95%) for three doses against the delta variant, 65% (51% to 75%) for two doses against the omicron variant; and 86% (77% to 91%) for three doses against the omicron variant. In-hospital mortality was 7.6% (81/1060) for alpha, 12.2% (461/3788) for delta, and 7.1% (40/565) for omicron. Among unvaccinated patients with covid-19 admitted to hospital, severity on the WHO clinical progression scale was higher for the delta versus alpha variant (adjusted proportional odds ratio 1.28, 95% confidence interval 1.11 to 1.46), and lower for the omicron versus delta variant (0.61, 0.49 to 0.77). Compared with unvaccinated patients, severity was lower for vaccinated patients for each variant, including alpha (adjusted proportional odds ratio 0.33, 0.23 to 0.49), delta (0.44, 0.37 to 0.51), and omicron (0.61, 0.44 to 0.85). CONCLUSIONS: mRNA vaccines were found to be highly effective in preventing covid-19 associated hospital admissions related to the alpha, delta, and omicron variants, but three vaccine doses were required to achieve protection against omicron similar to the protection that two doses provided against the delta and alpha variants. Among adults admitted to hospital with covid-19, the omicron variant was associated with less severe disease than the delta variant but still resulted in substantial morbidity and mortality. Vaccinated patients admitted to hospital with covid-19 had significantly lower disease severity than unvaccinated patients for all the variants.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2 , Case-Control Studies , Hospitalization , Humans , Immunization Schedule , Prospective Studies , Severity of Illness Index , United States
5.
J Infect Dis ; 225(10): 1694-1700, 2022 05 16.
Article in English | MEDLINE | ID: covidwho-1704377

ABSTRACT

Vaccine effectiveness (VE) against COVID-19 hospitalization was evaluated among immunocompetent adults (≥18 years) during March-August 2021 using a case-control design. Among 1669 hospitalized COVID-19 cases (11% fully vaccinated) and 1950 RT-PCR-negative controls (54% fully vaccinated), VE was 96% (95% confidence interval [CI], 93%-98%) among patients with no chronic medical conditions and 83% (95% CI, 76%-88%) among patients with ≥ 3 categories of conditions. VE was similar between those aged 18-64 years versus ≥65 years (P > .05). VE against severe COVID-19 was very high among adults without chronic conditions and lessened with increasing comorbidity burden.


Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Chronic Disease , Hospitalization , Humans , Vaccines, Synthetic , mRNA Vaccines
6.
iScience ; 25(1): 103602, 2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1561444

ABSTRACT

The COVID-19 pandemic revealed an urgent need for rapid profiling of neutralizing antibody responses and development of antibody therapeutics. The current Food and Drug Administration-approved serological tests do not measure antibody-mediated viral neutralization, and there is a need for standardized quantitative neutralization assays. We report a high-throughput two-step profiling approach for identifying neutralizing convalescent plasma. Screening and downselection for serum antibody binding to the receptor-binding domain are followed by quantitative neutralization testing using a chimeric vesicular stomatitis virus expressing spike protein of SARS-CoV-2 in a real-time cell analysis assay. This approach enables a predictive screening process for identifying plasma units that neutralize SARS-CoV-2. To calibrate antibody neutralizing activity in serum from convalescent plasma donors, we introduce a neutralizing antibody standard reagent composed of two human antibodies that neutralize SARS-CoV strains, including SARS-CoV-2 variants of concern. Our results provide a framework for establishing a standardized assessment of antibody-based interventions against COVID-19.

7.
MMWR Morb Mortal Wkly Rep ; 70(38): 1337-1343, 2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1436415

ABSTRACT

Three COVID-19 vaccines are authorized or approved for use among adults in the United States (1,2). Two 2-dose mRNA vaccines, mRNA-1273 from Moderna and BNT162b2 from Pfizer-BioNTech, received Emergency Use Authorization (EUA) by the Food and Drug Administration (FDA) in December 2020 for persons aged ≥18 years and aged ≥16 years, respectively. A 1-dose viral vector vaccine (Ad26.COV2 from Janssen [Johnson & Johnson]) received EUA in February 2021 for persons aged ≥18 years (3). The Pfizer-BioNTech vaccine received FDA approval for persons aged ≥16 years on August 23, 2021 (4). Current guidelines from FDA and CDC recommend vaccination of eligible persons with one of these three products, without preference for any specific vaccine (4,5). To assess vaccine effectiveness (VE) of these three products in preventing COVID-19 hospitalization, CDC and collaborators conducted a case-control analysis among 3,689 adults aged ≥18 years who were hospitalized at 21 U.S. hospitals across 18 states during March 11-August 15, 2021. An additional analysis compared serum antibody levels (anti-spike immunoglobulin G [IgG] and anti-receptor binding domain [RBD] IgG) to SARS-CoV-2, the virus that causes COVID-19, among 100 healthy volunteers enrolled at three hospitals 2-6 weeks after full vaccination with the Moderna, Pfizer-BioNTech, or Janssen COVID-19 vaccine. Patients with immunocompromising conditions were excluded. VE against COVID-19 hospitalizations was higher for the Moderna vaccine (93%; 95% confidence interval [CI] = 91%-95%) than for the Pfizer-BioNTech vaccine (88%; 95% CI = 85%-91%) (p = 0.011); VE for both mRNA vaccines was higher than that for the Janssen vaccine (71%; 95% CI = 56%-81%) (all p<0.001). Protection for the Pfizer-BioNTech vaccine declined 4 months after vaccination. Postvaccination anti-spike IgG and anti-RBD IgG levels were significantly lower in persons vaccinated with the Janssen vaccine than the Moderna or Pfizer-BioNTech vaccines. Although these real-world data suggest some variation in levels of protection by vaccine, all FDA-approved or authorized COVID-19 vaccines provide substantial protection against COVID-19 hospitalization.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Immunocompromised Host/immunology , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , Female , Humans , Male , Middle Aged , United States/epidemiology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult
8.
Trials ; 22(1): 221, 2021 Mar 20.
Article in English | MEDLINE | ID: covidwho-1143248

ABSTRACT

BACKGROUND: Convalescent plasma is being used widely as a treatment for coronavirus disease 2019 (COVID-19). However, the clinical efficacy of COVID-19 convalescent plasma is unclear. METHODS: The Passive Immunity Trial for Our Nation (PassITON) is a multicenter, placebo-controlled, blinded, randomized clinical trial being conducted in the USA to provide high-quality evidence on the efficacy of COVID-19 convalescent plasma as a treatment for adults hospitalized with symptomatic disease. Adults hospitalized with COVID-19 with respiratory symptoms for less than 14 days are eligible. Enrolled patients are randomized in a 1:1 ratio to 1 unit (200-399 mL) of COVID-19 convalescent plasma that has demonstrated neutralizing function using a SARS-CoV-2 chimeric virus neutralization assay. Study treatments are administered in a blinded fashion and patients are followed for 28 days. The primary outcome is clinical status 14 days after study treatment as measured on a 7-category ordinal scale assessing mortality, respiratory support, and return to normal activities of daily living. Key secondary outcomes include mortality and oxygen-free days. The trial is projected to enroll 1000 patients and is designed to detect an odds ratio ≤ 0.73 for the primary outcome. DISCUSSION: This trial will provide the most robust data available to date on the efficacy of COVID-19 convalescent plasma for the treatment of adults hospitalized with acute moderate to severe COVID-19. These data will be useful to guide the treatment of COVID-19 patients in the current pandemic and for informing decisions about whether developing a standardized infrastructure for collecting and disseminating convalescent plasma to prepare for future viral pandemics is indicated. TRIAL REGISTRATION: ClinicalTrials.gov NCT04362176 . Registered on 24 April 2020.


Subject(s)
COVID-19/therapy , Hospitalization , SARS-CoV-2/pathogenicity , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions , Humans , Immunization, Passive , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , SARS-CoV-2/immunology , Time Factors , Treatment Outcome , United States
9.
iScience ; 24(2): 102052, 2021 Feb 19.
Article in English | MEDLINE | ID: covidwho-1014568

ABSTRACT

A detailed understanding of the adaptive host response to SARS-CoV-2 infection in humans is urgently needed. We developed a sensitive, high-throughput, and efficient assay using liquid bead array technology. We observed advantages over traditional ELISA for the detection and quantification of binding IgG against the receptor binding domain (RBD) of SARS-CoV-2. To determine whether COVID-19 symptom severity correlates with SARS-CoV-2 IgG, we measured anti-RBD IgG levels from 67 subjects recovered from PCR-confirmed COVID-19. We found that COVID-19 symptom severity strongly correlated with RBD IgG level (p < 0.001). These findings have substantial implications for public policy surrounding assessments of antibody responses and possible immunity, as not all cases of COVID-19 can be assumed to generate a protective antibody response, and mild disease in particular is capable of generating very low-level anti-RBD IgG levels. These findings also have important implications for the selection of donors for convalescent plasma to be used therapeutically.

SELECTION OF CITATIONS
SEARCH DETAIL