Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Med Virol ; 94(11): 5567-5573, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1925955

ABSTRACT

In December 2019, several patients were hospitalized and diagnosed with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which subsequently led to a global pandemic. To date, there are no studies evaluating the relationship between the respiratory phageome and the SARS-CoV-2 infection. The current study investigated the phageome profiles in the nasopharyngeal swabs collected from 55 patients during the three different waves of coronavirus disease 2019 (COVID-19) in the Campania Region (Southern Italy). Data obtained from the taxonomic profiling show that phage families belonging to the order Caudovirales have a high abundance in the patient samples. Moreover, the severity of the COVID-19 infection seems to be correlated with the phage abundance.


Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2 , Severity of Illness Index , Virome
2.
Microb Pathog ; 165: 105506, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1763898

ABSTRACT

Since its first appearance, the SARS-CoV-2 has spread rapidly in the human population, reaching the pandemic scale with >280 million confirmed infections and more than 5 million deaths to date (https://covid19.who.int/). These data justify the urgent need to enhance our understanding of SARS-CoV-2 effects in the respiratory system, including those linked to co-infections. The principal aim of our study is to investigate existing correlations in the nasopharynx between the bacterial community, potential pathogens, and SARS-CoV-2 infection. The main aim of this study was to provide evidence pointing to possible relationships between components of the bacterial community and SARS-CoV-2 in the nasopharynx. Meta-transcriptomic profiling of the nasopharyngeal microbial community was carried out in 89 SARS-Cov-2 positive subjects from the Campania Region in Italy. To this end, RNA extracted from nasopharyngeal swabs collected at different times during the initial phases of the pandemic was analyzed by Next-Generation Sequencing (NGS). Results show a consistently high presence of members of the Proteobacteria (41.85%), Firmicutes (28.54%), and Actinobacteria (16.10%) phyla, and an inverted correlation between the host microbiome, co-infectious bacteria, and super-potential pathogens such as Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Neisseria gonorrhoeae. In depth characterization of microbiota composition in the nasopharynx can provide clues to understand its potential contribution to the clinical phenotype of Covid-19, clarifying the interaction between SARS-Cov-2 and the bacterial flora of the host, and highlighting its dysbiosis and the presence of pathogens that could affect the patient's disease progression and outcome.


Subject(s)
COVID-19 , Coinfection , Microbiota , Bacteria/genetics , Coinfection/epidemiology , High-Throughput Nucleotide Sequencing , Humans , Italy/epidemiology , Microbiota/genetics , Nasopharynx/microbiology , Pandemics , SARS-CoV-2/genetics
3.
Virus Evol ; 7(2): veab097, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1666208

ABSTRACT

The fusion of the SARS-CoV-2 virus with cells, a key event in the pathogenesis of Covid-19, depends on the assembly of a six-helix fusion core (FC) formed by portions of the spike protein heptad repeats (HRs) 1 and 2. Despite the critical role in regulating infectivity, its distinctive features, origin, and evolution are scarcely understood. Thus, we undertook a structure-guided positional and compositional analysis of the SARS-CoV-2 FC, in comparison with FCs of related viruses, tracing its origin and ongoing evolution. We found that clustered amino acid substitutions within HR1, distinguishing SARS-CoV-2 from SARS-CoV-1, enhance local heptad stereotypy and increase sharply the FC serine-to-glutamine (S/Q) ratio, determining a neat alternate layering of S-rich and Q-rich subdomains along the post-fusion structure. Strikingly, SARS-CoV-2 ranks among viruses with the highest FC S/Q ratio, together with highly syncytiogenic respiratory pathogens (RSV, NDV), whereas MERS-Cov, HIV, and Ebola viruses display low ratios, and this feature reflects onto S/Q segregation and H-bonding patterns. Our evolutionary analyses revealed that the SARS-CoV-2 FC occurs in other SARS-CoV-1-like Sarbecoviruses identified since 2005 in Hong Kong and adjacent regions, tracing its origin to >50 years ago with a recombination-driven spread. Finally, current mutational trends show that the FC is varying especially in the FC1 evolutionary hotspot. These findings establish a novel analytical framework illuminating the sequence/structure evolution of the SARS-CoV-2 FC, tracing its long history within Sarbecoviruses, and may help rationalize the evolution of the fusion machinery in emerging pathogens and the design of novel therapeutic fusion inhibitors.

5.
J Med Virol ; 94(5): 2275-2283, 2022 05.
Article in English | MEDLINE | ID: covidwho-1604831

ABSTRACT

From December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has spread rapidly, leading to a global pandemic. Little is known about possible relationships between SARS-CoV-2 and other viruses in the respiratory system affecting patient prognosis and outcomes. This study aims to characterize respiratory virome profiles in association with SARS-CoV-2 infection and disease severity, through the analysis in 89 nasopharyngeal swabs collected in a patient's cohort from the Campania region (Southern Italy). Results show coinfections with viral species belonging to Coronaviridae, Retroviridae, Herpesviridae, Poxviridae, Pneumoviridae, Pandoraviridae, and Anelloviridae families and only 2% of the cases (2/89) identified respiratory viruses.


Subject(s)
COVID-19 , Nasopharynx , COVID-19/epidemiology , COVID-19/therapy , COVID-19/virology , Humans , Italy/epidemiology , Nasopharynx/virology , Pandemics , SARS-CoV-2 , Virome
6.
Diagn Microbiol Infect Dis ; 102(4): 115632, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1587959

ABSTRACT

The SARS-CoV-2 virus is continuously evolving, with appearance of new variants characterized by multiple genomic mutations, some of which can affect functional properties, including infectivity, interactions with host immunity, and disease severity. The rapid spread of new SARS-CoV-2 variants has highlighted the urgency to trace the virus evolution, to help limit its diffusion, and to assess effectiveness of containment strategies. We propose here a PCR-based rapid, sensitive and low-cost allelic discrimination assay panel for the identification of SARS-CoV-2 genotypes, useful for detection in different sample types, such as nasopharyngeal swabs and wastewater. The tests carried out demonstrate that this in-house assay, whose results were confirmed by SARS-CoV-2 whole-genome sequencing, can detect variations in up to 10 viral genome positions at once and is specific and highly sensitive for identification of all tested SARS-CoV-2 clades, even in the case of samples very diluted and of poor quality, particularly difficult to analyze.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Nasopharynx , SARS-CoV-2/genetics , Wastewater
7.
Virol J ; 18(1): 168, 2021 08 14.
Article in English | MEDLINE | ID: covidwho-1359000

ABSTRACT

A growing number of emerging SARS-CoV-2 variants is being identified worldwide, potentially impacting the effectiveness of current vaccines. We report the data obtained in several Italian regions involved in the SARS-CoV-2 variant monitoring from the beginning of the epidemic and spanning the period from October 2020 to March 2021.


Subject(s)
COVID-19/epidemiology , Epidemics , SARS-CoV-2/genetics , COVID-19/virology , Humans , Italy/epidemiology , Prevalence
8.
BMJ Case Rep ; 14(7)2021 Jul 13.
Article in English | MEDLINE | ID: covidwho-1309824

ABSTRACT

We describe the case of a 63-year-old man who is reported to have the first confirmed case of COVID-19 reinfection in Campania Region, Italy. We found that the two episodes were caused by virus strains with clearly different genome sequences. The patient, a retired nurse, had a very low level of antibodies IgG directed against the spike protein 14 days after his first Pfizer/BioNTek vaccine shot.


Subject(s)
COVID-19 , Humans , Immunoglobulin G , Italy , Male , Middle Aged , Reinfection , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL