Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-322707

ABSTRACT

Neutrophils play an important role as the first line of innate immune defense. One function of neutrophils, called neutrophil extracellular traps (NETs), has been discovered recently. NETs are extensive fibrous structures released extracellularly from activated neutrophils in response to infection. They are composed of cytosolic protein assembled on a scaffold of released chromatin. These structures suppress the dissemination of micro-organisms in blood by trapping them mechanically, and by exploiting coagulant function to segregate them within the circulation. In addition, NET components (DNA, histone, and granule proteins) also contribute to the triggering of an inflammatory process. NET function, however, can be regarded as a double-edged sword. On one hand, NET formation is an efficient strategy for neutralizing invading micro-organisms. On the other hand, NET can be harmful to the host, as its exposed by-products that are toxic to endothelial cells and parenchymal tissue. We present here the analogous biological and physiological features of the harmful positive amplification loop between inflammation and tissue damage induced by NETosis dysregulation and Coronavirus Disease-2019 (COVID-19) pathogenesis. Considering the rapid evolution of this disease symptoms and its lethality, we hypothesize that COVID-19 progresses under an amplifier loop, leading to an massive, uncontrolled inflammation process. We also describe the correlations of COVID-19 symptoms and biological features with those consecutive to uncontrolled NET formation causing various sterile or infectious diseases. General clinical conditions, and numerous pathological and biological features, are analogous with NETs deleterious effects. We postulate that Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV2) induces a disproportionate virus-induced NET release, and that this plays a key role in COVID-19 pathogenesis. While neutrophils are the principal starting point for extracellular and circulating DNA release, targeting NETs rather than neutrophils themselves may stand for an effective strategy. This paper offers an in-depth review of NET formation, function and pathogenic dysregulation, as well as of current and future therapies to control NET unbalance. As such, it enables us also to suggest new therapeutic strategies to fight COVID-19. In combination with or independent of the latest tested approaches, we propose that, in the short term, deoxyribonuclease I (DNase-1) treatment should be evaluated;we also advocate a significant increase in research on the development of toll-like receptors (TLR) and C-type Lectin like receptors (CLEC) inhibitors, and on anti-IL26 therapies.

2.
J Clin Med ; 9(9)2020 Sep 11.
Article in English | MEDLINE | ID: covidwho-892446

ABSTRACT

Understanding of the pathogenesis of the coronavirus disease-2019 (COVID-19) remains incomplete, particularly in respect to the multi-organ dysfunction it may cause. We were the first to report the analogous biological and physiological features of COVID-19 pathogenesis and the harmful amplification loop between inflammation and tissue damage induced by the dysregulation of neutrophil extracellular traps (NETs) formation. Given the rapid evolution of this disease, the nature of its symptoms, and its potential lethality, we hypothesize that COVID-19 progresses under just such an amplifier loop, leading to a massive, uncontrolled inflammation process. Here, we describe in-depth the correlations of COVID-19 symptoms and biological features with those where uncontrolled NET formation is implicated in various sterile or infectious diseases. General clinical conditions, as well as numerous pathological and biological features, are analogous with NETs deleterious effects. Among NETs by-products implicated in COVID-19 pathogenesis, one of the most significant appears to be elastase, in accelerating virus entry and inducing hypertension, thrombosis and vasculitis. We postulate that severe acute respiratory syndrome-coronavirus 2 (SARS-CoV2) may evade innate immune response, causing uncontrolled NETs formation and multi-organ failure. In addition, we point to indicators that NETS-associated diseases are COVID-19 risk factors. Acknowledging that neutrophils are the principal origin of extracellular and circulating DNA release, we nonetheless, explain why targeting NETs rather than neutrophils themselves may in practice be a better strategy. This paper also offers an in-depth review of NET formation, function and pathogenic dysregulation, as well as of current and prospective future therapies to control NETopathies. As such, it enables us also to suggest new therapeutic strategies to fight COVID-19. In combination with or independent of the latest tested approaches, we propose the evaluation, in the short term, of treatments with DNase-1, with the anti-diabetic Metformin, or with drugs targeting elastase (i.e., Silvelestat). With a longer perspective, we also advocate a significant increase in research on the development of toll-like receptors (TLR) and C-type lectin-like receptors (CLEC) inhibitors, NET-inhibitory peptides, and on anti-IL-26 therapies.

3.
Journal of Clinical Medicine ; 9(9):2942, 2020.
Article | MDPI | ID: covidwho-762865

ABSTRACT

Understanding of the pathogenesis of the coronavirus disease-2019 (COVID-19) remains incomplete, particularly in respect to the multi-organ dysfunction it may cause. We were the first to report the analogous biological and physiological features of COVID-19 pathogenesis and the harmful amplification loop between inflammation and tissue damage induced by the dysregulation of neutrophil extracellular traps (NETs) formation. Given the rapid evolution of this disease, the nature of its symptoms, and its potential lethality, we hypothesize that COVID-19 progresses under just such an amplifier loop, leading to a massive, uncontrolled inflammation process. Here, we describe in-depth the correlations of COVID-19 symptoms and biological features with those where uncontrolled NET formation is implicated in various sterile or infectious diseases. General clinical conditions, as well as numerous pathological and biological features, are analogous with NETs deleterious effects. Among NETs by-products implicated in COVID-19 pathogenesis, one of the most significant appears to be elastase, in accelerating virus entry and inducing hypertension, thrombosis and vasculitis. We postulate that severe acute respiratory syndrome-coronavirus 2 (SARS-CoV2) may evade innate immune response, causing uncontrolled NETs formation and multi-organ failure. In addition, we point to indicators that NETS-associated diseases are COVID-19 risk factors. Acknowledging that neutrophils are the principal origin of extracellular and circulating DNA release, we nonetheless, explain why targeting NETs rather than neutrophils themselves may in practice be a better strategy. This paper also offers an in-depth review of NET formation, function and pathogenic dysregulation, as well as of current and prospective future therapies to control NETopathies. As such, it enables us also to suggest new therapeutic strategies to fight COVID-19. In combination with or independent of the latest tested approaches, we propose the evaluation, in the short term, of treatments with DNase-1, with the anti-diabetic Metformin, or with drugs targeting elastase (i.e., Silvelestat). With a longer perspective, we also advocate a significant increase in research on the development of toll-like receptors (TLR) and C-type lectin-like receptors (CLEC) inhibitors, NET-inhibitory peptides, and on anti-IL-26 therapies.

4.
Clin Sci (Lond) ; 134(12): 1295-1300, 2020 06 26.
Article in English | MEDLINE | ID: covidwho-599624

ABSTRACT

We demonstrate that the general clinical conditions, risk factors and numerous pathological and biological features of COVID-19 are analogous with various disorders caused by the uncontrolled formation of neutrophil extracellular traps and their by-products. Given the rapid evolution of this disease's symptoms and its lethality, we hypothesize that SARS-CoV2 evades innate immune response causing COVID-19 progresses under just such an amplifier loop, leading to a massive, uncontrolled inflammation process. This work allows us to propose new strategies for treating the pandemic.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Extracellular Traps/physiology , Host-Pathogen Interactions/immunology , Pneumonia, Viral/immunology , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Deoxyribonuclease I/therapeutic use , Humans , Immunity, Innate , Multiple Organ Failure/immunology , Multiple Organ Failure/virology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL