Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Year range
2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-316601

ABSTRACT

Background: Increased inflammation is a hallmark of COVID-19, with pulmonary and systemic inflammation identified in multiple cohorts of patients. Definitive cellular and molecular pathways driving severe forms of this disease remain uncertain. Neutrophils, the most numerous leukocytes in blood circulation, can contribute to immunopathology in infections, inflammatory diseases and acute respiratory distress syndrome (ARDS), a primary cause of morbidity and mortality in COVID-19. Neutrophilia, elevated neutrophil:lymphocyte ratios, and elevated neutrophil-associated cytokines are present in COVID-19, but changes in neutrophil functions have not been characterized. Here we analyzed the functional state of circulating neutrophils in COVID-19.Methods: Blood was obtained from critically ill COVID-19 patients over two weeks and healthy controls across multiple timepoints. Plasma cytokine profiles were assessed by bead array. Neutrophils were isolated and tested ex vivo for oxidative burst, neutrophil extracellular trap formation (NETosis) and phagocytosis. Lung tissue was obtained immediately post-mortem from COVID-19 patients for immunostaining.Results: Elevations in neutrophil-associated cytokines IL-8 and IL-6 were identified in COVID-19 plasma both at the first measurement and across their hospitalization (p < 0.0001). Elevations in cytokines IP-10, GM-CSF, IL-1b, IL-10 and TNF were also present at the first measurement and across hospital stays. Functionally, circulating neutrophils from COVID-19 patients had exaggerated oxidative burst (p < 0.0001), NETosis (p < 0.0001) and phagocytosis (p < 0.0001) relative to controls. Increased NETosis was found to be correlated with both leukocytosis and neutrophilia in COVID-19 patients. Neutrophils and NETs were identified within airways and alveoli in lung parenchyma. While elevations in IL-8 and ANC correlated to COVID-19 disease severity, plasma IL-8 levels alone correlated with death.Conclusions: Circulating neutrophils in COVID-19 exhibit an activated phenotype with increased oxidative burst, NETosis and phagocytosis. Readily accessible and dynamic, plasma IL-8 and circulating neutrophil function can be explored as potential COVID-19 disease biomarkers.Funding Statement: This work was supported by the Department of Veterans Affairs (salary support and VA Merit Award, PI Crotty Alexander) and NIH NHLBI (PI Crotty Alexander).Declaration of Interests: The authors report no conflicts of interest.Ethics Approval Statement: The research protocol was approved by the UCSD, VASDHS and Rady Children’s Hospital institutional review boards (IRBs) and all participants or designated family member gave written informed consent.

3.
Clin Infect Dis ; 74(3): 479-489, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1684541

ABSTRACT

BACKGROUND: Increased inflammation has been well defined in coronavirus disease 2019 (COVID-19), while definitive pathways driving severe forms of this disease remain uncertain. Neutrophils are known to contribute to immunopathology in infections, inflammatory diseases, and acute respiratory distress syndrome, a primary cause of morbidity and mortality in COVID-19. Changes in neutrophil function in COVID-19 may give insight into disease pathogenesis and identify therapeutic targets. METHODS: Blood was obtained serially from critically ill COVID-19 patients for 11 days. Neutrophil extracellular trap formation (NETosis), oxidative burst, phagocytosis, and cytokine levels were assessed. Lung tissue was obtained immediately postmortem for immunostaining. PubMed searches for neutrophils, lung, and COVID-19 yielded 10 peer-reviewed research articles in English. RESULTS: Elevations in neutrophil-associated cytokines interleukin 8 (IL-8) and interleukin 6, and general inflammatory cytokines IFN-inducible protien-19, granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin 1ß, interleukin 10, and tumor necrosis factor, were identified both at first measurement and across hospitalization (P < .0001). COVID-19 neutrophils had exaggerated oxidative burst (P < .0001), NETosis (P < .0001), and phagocytosis (P < .0001) relative to controls. Increased NETosis correlated with leukocytosis and neutrophilia, and neutrophils and NETs were identified within airways and alveoli in lung parenchyma of 40% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected lungs available for examination (2 of 5). While elevations in IL-8 and absolute neutrophil count correlated with disease severity, plasma IL-8 levels alone correlated with death. CONCLUSIONS: Literature to date demonstrates compelling evidence of increased neutrophils in the circulation and lungs of COVID-19 patients. Importantly, neutrophil quantity and activation correlates with severity of disease. Similarly, our data show that circulating neutrophils in COVID-19 exhibit an activated phenotype with enhanced NETosis and oxidative burst.


Subject(s)
COVID-19 , Extracellular Traps , Critical Illness , Humans , Neutrophil Activation , Neutrophils , Phenotype , SARS-CoV-2
4.
ATS Sch ; 2(2): 278-286, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1365986

ABSTRACT

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic resulted in redeployment of non-critical care-trained providers to intensive care units across the world. Concurrently, traditional venues for delivery of medical education faced major disruptions. The need for a virtual forum to fill knowledge gaps for healthcare workers caring for patients with coronavirus disease (COVID-19) was apparent in the early stages of the pandemic. Objective: The weekly, open-access COVID-19 Critical Care Training Forum (CCCTF) organized by the American Thoracic Society (ATS) provided a global audience access to timely content relevant to their learning needs. The goals of the forum were threefold: to aid healthcare providers in assessment and treatment of patients with COVID-19, to reduce provider anxiety, and to disseminate best practices. Methods: The first 13 ATS CCCTF sessions streamed live from April to July 2020. Structured debriefs followed each session and participant feedback was evaluated in planning of subsequent sessions. A second set of 14 sessions streamed from August to November 2020. Content experts were recruited from academic institutions across the United States. Results: As of July 2020, the ATS CCCTF had 2,494 live participants and 7,687 downloads for a total of 10,181 views. The majority of participants had both completed training (58.6%) and trained in critical care (53.8%). Physicians made up a majority (82.2%) of the audience that spanned the globe (61% were international attendees). Conclusion: We describe the rapid and successful implementation of an open-access medical education forum to address training and knowledge gaps among healthcare personnel caring for patients with COVID-19.

5.
Clin Infect Dis ; 74(3): 479-489, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1228461

ABSTRACT

BACKGROUND: Increased inflammation has been well defined in coronavirus disease 2019 (COVID-19), while definitive pathways driving severe forms of this disease remain uncertain. Neutrophils are known to contribute to immunopathology in infections, inflammatory diseases, and acute respiratory distress syndrome, a primary cause of morbidity and mortality in COVID-19. Changes in neutrophil function in COVID-19 may give insight into disease pathogenesis and identify therapeutic targets. METHODS: Blood was obtained serially from critically ill COVID-19 patients for 11 days. Neutrophil extracellular trap formation (NETosis), oxidative burst, phagocytosis, and cytokine levels were assessed. Lung tissue was obtained immediately postmortem for immunostaining. PubMed searches for neutrophils, lung, and COVID-19 yielded 10 peer-reviewed research articles in English. RESULTS: Elevations in neutrophil-associated cytokines interleukin 8 (IL-8) and interleukin 6, and general inflammatory cytokines IFN-inducible protien-19, granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin 1ß, interleukin 10, and tumor necrosis factor, were identified both at first measurement and across hospitalization (P < .0001). COVID-19 neutrophils had exaggerated oxidative burst (P < .0001), NETosis (P < .0001), and phagocytosis (P < .0001) relative to controls. Increased NETosis correlated with leukocytosis and neutrophilia, and neutrophils and NETs were identified within airways and alveoli in lung parenchyma of 40% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected lungs available for examination (2 of 5). While elevations in IL-8 and absolute neutrophil count correlated with disease severity, plasma IL-8 levels alone correlated with death. CONCLUSIONS: Literature to date demonstrates compelling evidence of increased neutrophils in the circulation and lungs of COVID-19 patients. Importantly, neutrophil quantity and activation correlates with severity of disease. Similarly, our data show that circulating neutrophils in COVID-19 exhibit an activated phenotype with enhanced NETosis and oxidative burst.


Subject(s)
COVID-19 , Extracellular Traps , Critical Illness , Humans , Neutrophil Activation , Neutrophils , Phenotype , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL