Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Add filters

Document Type
Year range
Value in Health ; 26(6 Supplement):S203, 2023.
Article in English | EMBASE | ID: covidwho-20239044


Background: The COVID-19 pandemic catalyzed innovation in infection control measures, including widespread deployment of digital contact tracing systems. However, these technologies were not well understood by the general public and were complex for the public health community to implement, hampering adoption. Objective(s): To provide an overview of existing digital contact tracing systems, creating a framework for understanding design elements that impact their effectiveness as public health tools and offering a rubric for decision-makers to evaluate different systems for selection and implementation. Method(s): Scientific literature and publicly available information from relevant health authorities and other stakeholders was reviewed. Information was synthesized to develop a conceptual framework explaining how key design elements impact effectiveness of digital contact tracing systems and highlighting opportunities for future improvement. Result(s): A range of digital contact tracing interventions were deployed by governments worldwide and several professional sports leagues. Key design elements of the systems include: (1) data architecture (i.e., centralized versus decentralized systems, impacting privacy guarantees and data availability);(2) proximity detection technology (e.g., type of device signaling);(3) alert logic and timing (e.g., time- and distance-based criteria affecting sensitivity and specificity of alerts;real-time proximity alerts and/or bidirectional contact tracing, determining scope of infection prevention);(4) population (eligibility and availability);and (5) the structural and public health context of intervention (e.g., availability and timeliness of testing). Several systems demonstrated effectiveness in preventing transmission during COVID-19, though numerous limitations have also been documented in the literature. Conclusion(s): Digital contact tracing systems have the potential to mitigate the economic and public health impact of future infectious disease outbreaks, reducing community transmission and detecting potential cases earlier in the disease course. Lessons learned from solutions deployed during the COVID-19 pandemic provide an opportunity to improve multiple aspects of these systems, enhancing preparedness for future outbreaks.Copyright © 2023