Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Otolaryngol Head Neck Surg ; 163(3): 459-461, 2020 09.
Article in English | MEDLINE | ID: covidwho-378045

ABSTRACT

Reverse transcriptase polymerase chain reaction (RT-PCR) detection of SARS-CoV-2 mRNA on nasopharyngeal swab is the standard for diagnosing active COVID-19 disease in asymptomatic cases and in symptomatic patients without the typical radiologic findings. For the present COVID-19 outbreak in Italy, we describe 4 symptomatic patients with negative RT-PCR results at the first nasopharyngeal swab, which became positive when collected a few hours later by an otolaryngologist. All the patients showed nasal obstruction. The present report suggests that inadequate nasopharyngeal sampling performed by untrained operators in the presence of nasal obstruction can be a relevant case of false-negative findings at RT-PCR, with a clear negative impact on the efforts to contain the current outbreak.


Subject(s)
Clinical Competence , Coronavirus Infections/diagnosis , Nasopharynx/virology , Pneumonia, Viral/diagnosis , Specimen Handling/methods , Aged , Betacoronavirus , False Negative Reactions , Female , Humans , Italy , Male , Middle Aged , Nasal Obstruction/complications , Pandemics , Reverse Transcriptase Polymerase Chain Reaction
2.
J Infect Dev Ctries ; 14(3): 265-267, 2020 03 31.
Article in English | MEDLINE | ID: covidwho-33551

ABSTRACT

COVID-19 case fatalities surged during the month of March 2020 in Italy, reaching over 10,000 by 28 March 2020. This number exceeds the number of fatalities in China (3,301) recorded from January to March, even though the number of diagnosed cases was similar (85,000 Italy vs. 80,000 China). Case Fatality Rates (CFR) could be somewhat unreliable because the estimation of total case numbers is limited by several factors, including insufficient testing and limitations in test kits and materials, such as NP swabs and PPE for testers. Sero prevalence of SARS-CoV-2 antibodies may help in more accurate estimations of the total number of cases. Nevertheless, the disparity in the differences in the total number of fatalities between Italy and China suggests investigation into several factors, such as demographics, sociological interactions, availability of medical equipment (ICU beds and PPE), variants in immune proteins (e.g., HLA, IFNs), past immunity to related CoVs, and mutations in SARS-CoV-2, could impact survival of severe COVID-19 illness survival and the number of case fatalities.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections , Epidemiological Monitoring , Mortality , Pandemics , Pneumonia, Viral , Adaptive Immunity , Antibodies, Viral , Betacoronavirus/pathogenicity , China/epidemiology , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Health Services Accessibility , Humans , Italy/epidemiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Reproducibility of Results , Seroepidemiologic Studies
3.
J Infect Dev Ctries ; 14(3): 254-264, 2020 03 31.
Article in English | MEDLINE | ID: covidwho-33545

ABSTRACT

18 years ago, in 2002, the world was astonished by the appearance of Severe Acute Respiratory Syndrome (SARS), supported by a zoonotic coronavirus, called SARS-CoV, from the Guangdong Province of southern China. After about 10 years, in 2012, another similar coronavirus triggered the Middle East Respiratory Syndrome (MERS-CoV) in Saudi Arabia. Both caused severe pneumonia killing 774 and 858 people with 8700 cases of confirmed infection for the former, and 2494 for the latter, causing significant economic losses. 8 years later, despite the MERS outbreak remaining in certain parts of the world, at the end of 2019, a new zoonotic coronavirus (SARS-CoV-2) and responsible of coronavirus Disease (COVID-19), arose from Wuhan, Hubei Province, China. It spread rapidly and to date has killed 3,242 persons with more than 81,000 cases of infection in China and causing over 126,000 global cases and 5,414 deaths in 166 other countries around the world, especially Italy. SARS-CoV-2 would seem to have come from a bat, but the intermediate reservoir continues to be unknown. Nonetheless, as for SARS-CoV and MERS CoV, the Spillover effect linked to animal-human promiscuity, human activities including deforestation, illegal bush-trafficking and bushmeat, cannot be excluded. Recently, however, evidence of inter-human only transmission of SARS-CoV-2 has been accumulated and thus, the outbreak seems to be spreading by human-to-human transmission throughout a large part of the world. Herein we will provide with an update on the main features of COVID-19 and suggest possible solutions how to halt the expansion of this novel pandemic.


Subject(s)
Coronavirus Infections , Coronavirus , Disease Outbreaks , Epidemiological Monitoring , Global Health , Pandemics , Pneumonia, Viral , Zoonoses , Animals , Betacoronavirus , Biological Evolution , Camelus , China/epidemiology , Chiroptera , Civil Defense , Communicable Diseases, Emerging , Coronavirus/genetics , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Disease Reservoirs , Human Activities , Italy , Middle East Respiratory Syndrome Coronavirus , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , Pneumonia, Viral/transmission , SARS Virus , Severe Acute Respiratory Syndrome/epidemiology , Viral Vaccines , Zoonoses/epidemiology
4.
J Infect Dev Ctries ; 14(2): 125-128, 2020 02 29.
Article in English | MEDLINE | ID: covidwho-5761

ABSTRACT

As of 28 February 2020, Italy had 888 cases of SARS-CoV-2 infections, with most cases in Northern Italy in the Lombardia and Veneto regions. Travel-related cases were the main source of COVID-19 cases during the early stages of the current epidemic in Italy. The month of February, however, has been dominated by two large clusters of outbreaks in Northern Italy, south of Milan, with mainly local transmission the source of infections. Contact tracing has failed to identify patient zero in one of the outbreaks. As of 28 February 2020, twenty-one cases of COVID-19 have died. Comparison between case fatality rates in China and Italy are identical at 2.3. Additionally, deaths are similar in both countries with fatalities in mostly the elderly with known comorbidities. It will be important to develop point-of-care devices to aid clinicians in stratifying elderly patients as early as possible to determine the potential level of care they will require to improve their chances of survival from COVID-19 disease.


Subject(s)
Betacoronavirus , Coronavirus Infections/mortality , Pandemics/statistics & numerical data , Pneumonia, Viral/mortality , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Child , Child, Preschool , China/epidemiology , Contact Tracing , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Female , Humans , Infant , Italy/epidemiology , Male , Middle Aged , Mortality , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Point-of-Care Systems , Risk Factors , Young Adult
5.
J Infect Dev Ctries ; 14(1): 3-17, 2020 01 31.
Article in English | MEDLINE | ID: covidwho-1512

ABSTRACT

On 31 December 2019 the Wuhan Health Commission reported a cluster of atypical pneumonia cases that was linked to a wet market in the city of Wuhan, China. The first patients began experiencing symptoms of illness in mid-December 2019. Clinical isolates were found to contain a novel coronavirus with similarity to bat coronaviruses. As of 28 January 2020, there are in excess of 4,500 laboratory-confirmed cases, with > 100 known deaths. As with the SARS-CoV, infections in children appear to be rare. Travel-related cases have been confirmed in multiple countries and regions outside mainland China including Germany, France, Thailand, Japan, South Korea, Vietnam, Canada, and the United States, as well as Hong Kong and Taiwan. Domestically in China, the virus has also been noted in several cities and provinces with cases in all but one provinence. While zoonotic transmission appears to be the original source of infections, the most alarming development is that human-to-human transmission is now prevelant. Of particular concern is that many healthcare workers have been infected in the current epidemic. There are several critical clinical questions that need to be resolved, including how efficient is human-to-human transmission? What is the animal reservoir? Is there an intermediate animal reservoir? Do the vaccines generated to the SARS-CoV or MERS-CoV or their proteins offer protection against 2019-nCoV? We offer a research perspective on the next steps for the generation of vaccines. We also present data on the use of in silico docking in gaining insight into 2019-nCoV Spike-receptor binding to aid in therapeutic development. Diagnostic PCR protocols can be found at https://www.who.int/health-topics/coronavirus/laboratory-diagnostics-for-novel-coronavirus.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Disease Reservoirs/veterinary , Disease Transmission, Infectious , Pneumonia, Viral/transmission , Animals , Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Disease Reservoirs/virology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Sequence Analysis, Protein , Travel , Vaccination , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Vaccines , Zoonoses
SELECTION OF CITATIONS
SEARCH DETAIL