Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Microbiol Res ; 263: 127133, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1956271


OBJECTIVES: Despite the quick implementation of infection prevention and control procedures and the use of personal protective equipment within healthcare facilities, many cases of nosocomial COVID-19 transmission have been reported. We aimed to estimate the frequency and impact of healthcare-associated COVID-19 (HA-COVID-19) and evaluate the contribution of whole-genome sequencing (WGS) in cluster investigation. METHODS: We estimated the frequency and mortality of HA-COVID-19 infections from September 1 to November 30, 2020, with a focus on the evolution of hospitalized community-associated COVID-19 (CA-COVID-19) cases and cases detected among healthcare workers (HCWs) within the Sorbonne University Hospital Group (Paris, France). We thoroughly examined 12 clusters through epidemiological investigations and WGS. RESULTS: Overall, 209 cases of HA-COVID-19 were reported. Evolution of HA-COVID-19 incidence closely correlated with the incidence of CA-COVID-19 and COVID-19 among HCWs. During the study period, 13.9 % of hospitalized patients with COVID-19 were infected in the hospital and the 30-day mortality rate of HA-COVID-19 was 31.5 %. Nosocomial transmission of SARS-CoV-2 led to clusters involving both patients and HCWs. WGS allowed the exclusion of one-third of cases initially assigned to a cluster. CONCLUSIONS: WGS analysis combined with comprehensive epidemiological investigations is essential to understand transmission routes and adapt the IPC response to protect both patients and HCWs.

COVID-19 , Cross Infection , COVID-19/epidemiology , Cross Infection/epidemiology , Delivery of Health Care , Hospitals , Humans , SARS-CoV-2/genetics
JAMA Netw Open ; 4(3): e211489, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1130417


Importance: There is evidence of central nervous system impairments associated with coronavirus disease 2019 (COVID-19) infection, including encephalopathy. Multimodal monitoring of patients with COVID-19 may delineate the specific features of COVID-19-related encephalopathy and guide clinical management. Objectives: To investigate clinical, biological, and brain magnetic resonance imaging (MRI) findings in association with electroencephalographic (EEG) features for patients with COVID-19, and to better refine the features of COVID-19-related encephalopathy. Design, Setting, and Participants: This retrospective cohort study conducted in Pitié-Salpêtrière Hospital, Paris, France, enrolled 78 hospitalized adults who received a diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-Cov2) and underwent EEG between March 30 and June 11, 2020. Exposures: Detection of SARS-CoV-2 from a nasopharyngeal specimen using a reverse transcription-polymerase chain reaction assay or, in the case of associated pneumonia, on a computed tomography scan of the chest. Main Outcomes and Measures: Data on the clinical and paraclinical features of the 78 patients with COVID-19 were retrieved from electronic patient records. Results: Of 644 patients who were hospitalized for COVID-19, 78 (57 men [73%]; mean [SD] age, 61 [12] years) underwent EEG. The main indications for EEG were delirium, seizure-like events, and delayed awakening in the intensive care unit after stopping treatment with sedatives. Sixty-nine patients showed pathologic EEG findings, including metabolic-toxic encephalopathy features, frontal abnormalities, periodic discharges, and epileptic activities. Of 57 patients who underwent brain MRI, 41 showed abnormalities, including perfusion abnormalities, acute ischemic lesions, multiple microhemorrhages, and white matter-enhancing lesions. Fifty-five patients showed biological abnormalities, including dysnatremia, kidney failure, and liver dysfunction, the same day as the EEG. The results of cerebrospinal fluid analysis were negative for SARS-Cov-2 for all tested patients. Nine patients who had no identifiable cause of brain injury outside COVID-19 were further isolated; their brain injury was defined as COVID-19-related encephalopathy. They represented 1% (9 of 644) of patients with COVID-19 requiring hospitalization. Six of these 9 patients had movement disorders, 7 had frontal syndrome, 4 had brainstem impairment, 4 had periodic EEG discharges, and 3 had MRI white matter-enhancing lesions. Conclusions and Relevance: The results from this cohort of patients hospitalized with COVID-19 suggest there are clinical, EEG, and MRI patterns that could delineate specific COVID-19-related encephalopathy and guide treatment strategy.

Brain Diseases/diagnostic imaging , COVID-19/diagnostic imaging , SARS-CoV-2 , Cohort Studies , Electroencephalography , Electronic Health Records , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged
Radiology ; 297(3): E313-E323, 2020 12.
Article in English | MEDLINE | ID: covidwho-930394


Background This study provides a detailed imaging assessment in a large series of patients infected with coronavirus disease 2019 (COVID-19) and presenting with neurologic manifestations. Purpose To review the MRI findings associated with acute neurologic manifestations in patients with COVID-19. Materials and Methods This was a cross-sectional study conducted between March 23 and May 7, 2020, at the Pitié-Salpêtrière Hospital, a reference center for COVID-19 in the Paris area. Adult patients were included if they had a diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with acute neurologic manifestations and referral for brain MRI. Patients with a prior history of neurologic disease were excluded. The characteristics and frequency of different MRI features were investigated. The findings were analyzed separately in patients in intensive care units (ICUs) and other departments (non-ICU). Results During the inclusion period, 1176 patients suspected of having COVID-19 were hospitalized. Of 308 patients with acute neurologic symptoms, 73 met the inclusion criteria and were included (23.7%): thirty-five patients were in the ICU (47.9%) and 38 were not (52.1%). The mean age was 58.5 years ± 15.6 [standard deviation], with a male predominance (65.8% vs 34.2%). Forty-three patients had abnormal MRI findings 2-4 weeks after symptom onset (58.9%), including 17 with acute ischemic infarct (23.3%), one with a deep venous thrombosis (1.4%), eight with multiple microhemorrhages (11.3%), 22 with perfusion abnormalities (47.7%), and three with restricted diffusion foci within the corpus callosum consistent with cytotoxic lesions of the corpus callosum (4.1%). Multifocal white matter-enhancing lesions were seen in four patients in the ICU (5%). Basal ganglia abnormalities were seen in four other patients (5%). Cerebrospinal fluid analyses were negative for SARS-CoV-2 in all patients tested (n = 39). Conclusion In addition to cerebrovascular lesions, perfusion abnormalities, cytotoxic lesions of the corpus callosum, and intensive care unit-related complications, we identified two patterns including white matter-enhancing lesions and basal ganglia abnormalities that could be related to severe acute respiratory syndrome coronavirus 2 infection. © RSNA, 2020 Online supplemental material is available for this article.

Brain/diagnostic imaging , Cerebrovascular Disorders/complications , Cerebrovascular Disorders/diagnostic imaging , Coronavirus Infections/complications , Magnetic Resonance Imaging/methods , Pneumonia, Viral/complications , Acute Disease , Adult , Aged , Aged, 80 and over , Betacoronavirus , Brain/physiopathology , COVID-19 , Cerebrovascular Disorders/physiopathology , Coronavirus Infections/physiopathology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/physiopathology , Retrospective Studies , SARS-CoV-2