Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nat Commun ; 12(1): 1726, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1142436

ABSTRACT

SARS-CoV-2 is a respiratory pathogen and primarily infects the airway epithelium. As our knowledge about innate immune factors of the respiratory tract against SARS-CoV-2 is limited, we generated and screened a peptide/protein library derived from bronchoalveolar lavage for inhibitors of SARS-CoV-2 spike-driven entry. Analysis of antiviral fractions revealed the presence of α1-antitrypsin (α1AT), a highly abundant circulating serine protease inhibitor. Here, we report that α1AT inhibits SARS-CoV-2 entry at physiological concentrations and suppresses viral replication in cell lines and primary cells including human airway epithelial cultures. We further demonstrate that α1AT binds and inactivates the serine protease TMPRSS2, which enzymatically primes the SARS-CoV-2 spike protein for membrane fusion. Thus, the acute phase protein α1AT is an inhibitor of TMPRSS2 and SARS-CoV-2 entry, and may play an important role in the innate immune defense against the novel coronavirus. Our findings suggest that repurposing of α1AT-containing drugs has prospects for the therapy of COVID-19.


Subject(s)
COVID-19/drug therapy , SARS-CoV-2/drug effects , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , alpha 1-Antitrypsin/pharmacology , Antibodies, Viral/blood , Antiviral Agents/pharmacology , COVID-19/blood , Caco-2 Cells , Humans , Immunoglobulin G/blood , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Virus Replication/drug effects
2.
Adv Drug Deliv Rev ; 167: 47-65, 2020 12.
Article in English | MEDLINE | ID: covidwho-921794

ABSTRACT

To date, no effective vaccines or therapies are available against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pandemic agent of the coronavirus disease 2019 (COVID-19). Due to their safety, efficacy and specificity, peptide inhibitors hold great promise for the treatment of newly emerging viral pathogens. Based on the known structures of viral proteins and their cellular targets, antiviral peptides can be rationally designed and optimized. The resulting peptides may be highly specific for their respective targets and particular viral pathogens or exert broad antiviral activity. Here, we summarize the current status of peptides inhibiting SARS-CoV-2 entry and outline the strategies used to design peptides targeting the ACE2 receptor or the viral spike protein and its activating proteases furin, transmembrane serine protease 2 (TMPRSS2), or cathepsin L. In addition, we present approaches used against related viruses such as SARS-CoV-1 that might be implemented for inhibition of SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19/drug therapy , COVID-19/metabolism , Peptide Fragments/administration & dosage , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Drug Delivery Systems/methods , Humans , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding/drug effects , Protein Binding/physiology , Protein Structure, Secondary , Protein Structure, Tertiary , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/administration & dosage , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/metabolism
3.
J Am Chem Soc ; 142(40): 17024-17038, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-772998

ABSTRACT

Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen that promote viral infection. Yet, it is unknown how CLR01 exerts these two distinct therapeutic activities. Here, we delineate a novel mechanism of antiviral activity by studying the activity of tweezer variants: the "phosphate tweezer" CLR01, a "carboxylate tweezer" CLR05, and a "phosphate clip" PC. Lysine complexation inside the tweezer cavity is needed to antagonize amyloidogenesis and is only achieved by CLR01. Importantly, CLR01 and CLR05 but not PC form closed inclusion complexes with lipid head groups of viral membranes, thereby altering lipid orientation and increasing surface tension. This process disrupts viral envelopes and diminishes infectivity but leaves cellular membranes intact. Consequently, CLR01 and CLR05 display broad antiviral activity against all enveloped viruses tested, including herpesviruses, Measles virus, influenza, and SARS-CoV-2. Based on our mechanistic insights, we potentiated the antiviral, membrane-disrupting activity of CLR01 by introducing aliphatic ester arms into each phosphate group to act as lipid anchors that promote membrane targeting. The most potent ester modifications harbored unbranched C4 units, which engendered tweezers that were approximately one order of magnitude more effective than CLR01 and nontoxic. Thus, we establish the mechanistic basis of viral envelope disruption by specific tweezers and establish a new class of potential broad-spectrum antivirals with enhanced activity.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Bridged-Ring Compounds/pharmacology , Organophosphates/pharmacology , Viral Envelope Proteins/drug effects , Acid Phosphatase/chemistry , Acid Phosphatase/metabolism , Amyloid/antagonists & inhibitors , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Arginine/chemistry , Betacoronavirus/drug effects , Bridged-Ring Compounds/chemistry , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/virology , HIV Infections/drug therapy , HIV-1/drug effects , Humans , Lipids/chemistry , Lysine/chemistry , Magnetic Resonance Spectroscopy , Organophosphates/chemistry , SARS-CoV-2 , Seminal Vesicle Secretory Proteins/chemistry , Seminal Vesicle Secretory Proteins/metabolism , Structure-Activity Relationship , Viral Envelope Proteins/metabolism , Zika Virus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL